Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Квадратурные формулы Гаусса






Легко видеть, что квадратурная формула прямоугольников точна для многочлена нулевой степени, формула трапеций — для многочлена первой степени, а формула Симпсона — второй. Гауссом были построены квадратурные формулы наивысшего алгебраического порядка точности.

Т.е. в квадратурной формуле узлы и коэффициенты подбирались так, чтобы формула была точна для всех многочленов как можно более высокой степени, (степени, превышающей n)

Доказано, что эта наивысшая степень для n узлов — .Как правило, сначала строят формулы Гаусса для стандартного отрезка [-1, 1].Затем с помощью замены переменной осуществляют переход к формулам интегрирования на произвольном отрезке: Формула точна для многочленов степени тогда и только тогда, когда она точна для функций . Это эквивалентно тому, что узлы и коэффициенты должны удовлетворять системе уравнений , .

Пример. Получим квадратурную формулу Гаусса для двух узлов, т.е. . Соответствующая квадратурная формула Гаусса имеет вид и она точна для всех многочленов до третьей степени включительно.

Тогда: , , , . Получим для коэффициентов и узлов квадратурной формулы систему уравнений

решение которой — и . Таким образом получаем квадратурную формулу Гаусса , точную для многочленов третьей степени.

Замечательное свойство квадратурных формул Гаусса — возможность вычислять несобственные интегралы от неограниченных функций, поскольку узлы квадратурных формул Гаусса лежат строго внутри отрезка интегрирования. Например, (точное значение интеграла равно ).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал