Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Понятие определенного интеграла.






Пусть λ =max∆ I – длина наиб. Частичнго отрезка λ → 0.

Если существует конечный предел I интегральных сумм s при l®0, то этот предел называется определенным интегралом Римана для функции f(x) по отрезку [a, b] и обозначается I= = (**)

D'ef функция f(x) называется интегрируемой на [a, b] если для любой последовательности разбиений {Xk}, у которой соответствующая последовательность интегральных сумм {sk} стремится к одному и тому же числу I.

D'ef Число I называется определенным интегралом по Риману для функции f(x) оп отрезку [a, b], если для любого e> 0 сущесвтует такое d> 0, что при l< d (т.е. если отрезок [a, b] разбит на части с длинами DXi< d) независимо от выбора точек xI выполняется неравенство , или же

 

Замечание.Число I называется определенным интегралом Римана от функции f(x) по сегменту [a, b] и обозначается так: I= , где а- нижний предел, b- верхний предел

Следует отметить, что = =

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал