![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Применение метода Монте-Карло для вычисления кратных интегралов
Хотя Mathcad позволяет вычислять кратные интегралы непосредственно, однако в большинстве случаев при кратности интегралов 3 и более применение метода Монте-Карло предпочтительнее. Дело в том, при одинаковой точности метод Монте-Карло дает существенный выигрыш во времени (в десятки и сотни раз), особенно при большой кратности интегралов. Идея метода состоит в том, что интеграл заменяется величиной Fср.·V, где V – объем области интегрирования, Fср. –среднее значение подынтегральной функции, вычисленное по нескольким случайно выбранным точкам. Определим подынтегральную функцию. И вычислим интеграл обычным способом (обратите внимание на время счета!) А теперь вычислит тот же интеграл методом Монте-Карло
Поскольку в нашем случае объем области интегрирования равен 1, полученное среднее значение совпадает со значением интеграла. При относительной погрешности в 0.001% время вычисления интеграла по методу Монте-Карло существенно меньше. Интеграл можно вычислить и другим способом. Заключим область интегрирования внутрь прямоугольной области, " набросаем" внутрь полученной области N случайных точек. Тогда интеграл найдем из соотношения Максимальное значение подынтегральной функции в области интегрирования не превосходит 125, следовательно, мы может заключить всю область интегрирования внутрь четырехмерного цилиндроида высотой 125 и объемом V=125. Сгенерируем N четверок случайных чисел и подсчитаем, сколько из них лежит под поверхностью f(x, y, z).
|