Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
А) Сходимость итерационного процесса.
Для решения задачи (например, нахождение корня нелинейного уравнения) строится метод последовательных приближений. В результате многократного повторения процесса (или итераций) получается последовательность значений . И в этом случае имеем сходящийся численный метод.
б) Сходимость в методах дискретизации. Данные методы заключаются в замене задачи с непрерывными параметрами на задачу, в которой значения функций вычисляются в фиксированных точках. Это относится, в частности, к численному интегрированию, решению дифференциальных уравнений и т.д. В данном случае под сходимостью метода понимается стремление значений решения дискретной модели задачи к соответствующим значениям решения исходной задачи при стремлении к нулю параметра дискретизации (например, шага интегрирования). Итак, для получения решения задачи с необходимой точностью ее постановка должна быть корректной, а используемый численный метод должен обладать устойчивостью и сходимостью.
|