Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дифференциальные уравнения движения Эйлера для идеальной жидкости
Рассмотрим установившееся движение идеальной жидкости. Выделим в потоке жидкости элементарный объём dV в виде параллелепипеда (рис. 1.4). Как уже было показано (см. стр. 14), сумма проекций всех сил, действующих на параллелепипед, составляет: Согласно основному принципу динамики (второй закон Ньютона), сумма проекций всех сил, действующих на движущийся элементарный объём жидкости, равна произведению массы жидкости на её ускорение. Масса жидкости в объёме параллелепипеда: .Ускорение жидкости, движущейся со скоростью , равно , а проекции ускорения на оси координат: , , , где - проекции скорости на оси координат. Таким образом, получаем:
или после сокращения на :
Система уравнений (1.21) представляет собой дифференциальные уравнения движения Эйлера для установившегося потока идеальной жидкости.
|