![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейная свертка
Если ЛПР может не только ранжировать критерии, но и дать сравнительную количественную оценку значимости (важности) критериев, решение многокритериальной задачи сводится к обычной задаче с одним критерием, в качестве которого берется обобщенный показатель вида
где Сi - положительные числа, отражающие веса критериев в структуре предпочтений ЛПР. При групповом ЛПР Ci находятся по индивидуальным весам одним из методов обработки экспертных оценок. Обычно значения Сi нормируются так, чтобы Данный способ решения многокритериальной задачи имеет существенные недостатки. Во-первых, большие затруднения возникают при определении весов. Одно дело – расположить критерии по важности, и совсем другое - оценить на сколько или во сколько один критерий важнее другого. Во-вторых, неизвестна связь между значениями весов и значениями критериев в точке максимума F (Х). Очень часто эта зависимость оказывается существенно нелинейной (даже в линейных задачах), включая зоны нечувствительности значений fi к изменению Ci. Поэтому для получения решения, удовлетворяющего ЛПР, приходится максимизировать F (X) для нескольких наборов С i. Наконец, заметим, что в свертке (10.17) целесообразно все критерии приводить к одним единицам измерения. С этой целью лучше представлять критерии в относительных единицах, беря за базовое максимальное или желаемое значение. Достоинство метода – в стандартности задачи, к которой сводится исходная многокритериальная проблема. Пример 10.1. Рассмотрим задачу линейного программирования с тремя критериями: максимизировать f 1(X) =- 3 x 1 + 2 x 2, f 2(X) = 4 x 1 + 3 x 2, f 3(X)=2 x 1 - 5 х 2 при условиях 2 x 1 + 3 x 2 2 x 1+ x 2 x 1, x 2 Допустимая область и линии равного уровня критериев показаны на
то результат максимизации F (Х), как легко убедиться, совпадает с максимизацией одной функции f 3(Х).Таким образом, при равных весах решение по линейной свертке дает наилучшее значение f 3 и наихудшее для f 1. Используя параметрическое программирование, можно определить диапазон значений Ci (зону нечувствительности), в котором оптимальное решение по F (Х) будет оставаться в точке С.
|