Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Контрольная работа 2
(Листы 7…12. Листы 8, 10, 12 соответственно выполняются на обороте листов 7, 9, 11).
Лист 7 Формат A3. Основная надпись по форме 4а. Выполнить три задачи на пересечение поверхности плоскостью и прямой. Пример выполнения листа на рис. 11. Задачи 1 и 2 выполняют в левой чисти листа, одна под другой, а задачу 3 – в правой части листа.
Указания к задаче 1. Чтобы решить задачу, необходимо: 1) заключить прямую во вспомогательную плоскость частного положения (фронтально-проецирующую или горизонтально-проецирующую); 2) построить линию пересечения пирамиды с этой вспомогательной плоскостью; 3) отметить точки пересечения проекций прямой с проекциями линии пересечения; 4) определить видимость. Так как плоскость, в которую заключается прямая, частного положения, то одна из проекций фигуры сечения пирамиды совпадает с проекцией секущей плоскости, выродившейся в линию. Вторую проекцию сечения достраивают по точкам фигуры сечения, которые лежат непосредственно на ребрах. Задача может иметь одно из трех решений: прямая пересекает пирамиду в двух точках, в одной точке (касается) и не пересекает поверхность.
Задача 2. Д а н о: основание конуса – окружность диаметра 60 мм, высота конуса 70 мм и прямая l. Требуется: определить точки пересечения прямой l с поверхностью прямого кругового конуса. Положение прямой студент выбирает самостоятельно, учитывая характеристику прямой, указанную в табл. 8. Указания к задаче 2. Чтобы решить задачу, необходимо выполнить действия, аналогичные перечисленным в указаниях к задаче 1. При этом следует напомнить; что выбирать нужно такие вспомогательно-секущие плоскости, которые дают наипростейший контур сечения конуса: окружность и треугольник. Так, например, для задачи 2, помещенной на рис. 11, вспомогательно-секущая плоскость является плоскостью общего положения, которая проходит через вершину конуса и задана двумя пересекающимися прямыми (заданной прямой и произвольной прямой, проходящей через вершину конуса и точку К данной прямой). Такая плоскость дает сечение в виде треугольника. Если через горизонтальную прямую провести горизонтальную плоскость, сечение будет иметь форму окружности. После определения точек пересечения прямой с конусом не забудьте установить видимые отрезки прямой. Задача 3. Построить три проекции линии пересечения сложной поверхности с фронтально-проецирующей плоскостью и способом совмещения (вращения вокруг линии уровня) определить натуральную величину этого сечения. Данные для вычерчивания комбинированной поверхности берут т табл. 9. Таблица 8
Указания к задаче 3. Задачу размещают на правой стороне листа (см. рис.11). Высота всей комбинированной поверхности равна 100 мм, нижняя ее часть – 35 мм. Размеры диаметров оснований поверхностей и вспомогательных окружностей, а также стороны многоугольников приведены в табл. 9. Положение секущей плоскости для своего варианта студент назначает самостоятельно. Задачу решают в два этапа: 1) строят проекции сечения; 2) определяют натуральную величину сечения указанным способом. Так как в данном задании для пересечения предложена плоскость частного положения – фронтально-проецирующая, то решение задачи сводится к построению проекций ряда точек фигуры сечения заданной поверхности как точек, расположенных на образующих или направляющих линиях этой поверхности. Первоначально крайние и промежуточные точки сечения назначаются на следу секущей плоскости. Натуральную величину сечения определяют по тем же точкам, которые были установлены на первом этапе. За ось вращения плоскости сечения выбирают фронталь плоскости сечения, совпадающую с его осью симметрии. Для того чтобы избежать наложения изображений, фронталь следует размещать на свободном поле чертежа параллельно следу секущей плоскости. Каждая точка сечения будет вращаться вокруг оси в плоскости, перпендикулярной ей. Радиус вращения отображен в натуральную величину на горизонтальной плоскости проекций и соответствует расстоянию от точки до продольной оси симметрии (оси вращения).
Лист 8
Формат A3. Основная надпись по форме 4б. Выполнить две задачи на пересечение многогранных и кривых поверхностей и построение разверток поверхностей. Пример выполнения см. на рис. 12. Задача 1. Д а н о: многогранник и кривая поверхность. Требуется: способом вспомогательно-секущих плоскостей построить линию пересечения многогранной и кривой поверхностей, выделив ее видимые и невидимые участки. Данные для задачи берут из табл. 10.
Таблица 9
Таблица 10
3. Если линия, принадлежащая поверхности, видна не полностью, то точки перехода от видимой части линии пересечения к невидимой располагаются на очерке поверхности. Видимая часть линии пересечения поверхностей должна быть видимой как на одной поверхности, отдельно взятой, так и на другой
Задача 2. Дано: две пересекающиеся поверхности – многогранник и кривая поверхность -- и линия их пересечения. Требуется: построить полную развертку одной из пересекающихся поверхностей и нанести на ней линию их пересечения. Поверхность для построения развертки студент выбирает сам из двух поверхностей задачи 1 в соответствии со своим вариантом Линия пересечения поверхностей наносится по результату решения задачи ]. Указания к задаче 2. Задачу выполняют на правой половине листа в такой последовательности: 1) в кривую поверхность вписывают многогранник; 2) определяют натуральные величины всех ребер вписанного многогранника; 3) на плоскости чертежа строят одну из граней поверхности по ее натуральным величинам ребер и к ней последовательно пристраивают остальные грани, пользуясь смежными ребрами; 4) соответствующие вершины граней соединяют плавными кривыми линиями. При развертывании многогранной поверхности выполняют только вторую и третью операции. Линия пересечения поверхностей наносится на развертку с помощью ее характерных точек. Для каждой такой точки в ортогональных проекциях определяют положение образующей и направляющей линий поверхности, на пересечении которых расположена взятая точка. Строят эти линии (образующую и направляющею) на развертке и в их пересечении отмечают искомую точку линии пересечения поверхностей (рис. 12)
Лист 9
Формат A3 Основная надпись по форме 4а. Выполнить две задачи на построение линии пересечения поверхностей различными способами. Пример выполнения листа представлен на рис. 13.
Указания к задаче 1. Задачу выполняют с левой стороны листа в такой последовательности: 1) определяют точки пересечения очерковых образующих одной поверхности с другой, затем второй поверхности с первой; 2) определяют наивысшие и наинизшие точки линии пересечения; 3) определяют промежуточные точки линии пересечения; 4) все найденные точки пересечения последовательно соединяют кривой линией, учитывая их видимость. При выборе вспомогательно-секущих плоскостей необходимо помнить, что они должны пересечь одновременно обе поверхности и дать наипростейшие фигуры сечения. Для всех вариантов заданий вспомогательно-секущими плоскостями могут быть выбраны плоскости уровня: для одних – горизонтальные, для других – вертикальные или те и другие. Точками пересечения поверхностей являются точки пересечения контуров фигур сечения поверхностей, лежащих в одной и той же вспомогательно-секущей плоскости. Каждая секущая плоскость может определить от одной до четырех точек линии пересечения в зависимости oт характера пересекающихся поверхностей, их расположения относительно друг друга и положения самой секущей плоскости.
Задача 2. Д а н о: две пересекающиеся поверхности вращения. Требуется: способом секущих концентрических сфер построить линию их пересечения и определить ее видимость. Данные варианта задачи берут из табл. 12. Указания к задаче 2. Задачу выполняют на правой половине листа в следующем порядке: 1) определяют центр концентрических сфер – точку пересечения осей поверхностей вращения – и проводят ряд концентрических окружностей – сфер различного радиуса. Диапазон радиусов сфер определяется минимальным и максимальным радиусами. Минимальный радиус секущей сферы назначается из условия касания сферы одной и пересечения другой пересекающихся поверхностей. Максимальным радиусом является отрезок прямой от центра сферы до наиболее удаленной точки пересечения очерков пересекающихся поверхностей (Ф1 и Ф2 на рис. 14); 2) строят линии пересечения выбранных сфер с заданными пересекающимися поверхностями. Каждая из сфер, будучи соосной с заданными поверхностями, пересечет их по окружностям, которые в данной задаче на плоскости П2 представляют собой прямые линии – хорды окружности, называемые параллелями (рис. 15). Точки пересечения проекций полученных параллелей являются проекциями искомых точек линии пересечения поверхностей; 3) найденные точки пересечения поверхностей соединяют плавной кривой линией; 4) достраивают горизонтальную проекцию линии пересечения по имеющимся точкам.
|