Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Критерий совместности системы линейных уравнений






Теорема 2.5 (Кронекера – Капелли или критерий совместности системы линейных уравнений). Для того чтобы система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы равнялся рангу расширенной матрицы .

► Пусть задана система линейных уравнений

(2.16)

с матрицей А. Будем обозначать j -й столбец матрицы А. Система (2.16) может быть записана следующим образом:

(2.17)

Необходимость. Дано: система совместна. Следовательно, существует упорядоченный набор чисел такой, что

Получаем: [прибавляем к последнему столбцу ]

Достаточность. Дано: . Предположим, что базисный минор матрицы A расположен в первых r столбцах. Этот же минор является базисным и для матрицы Ã: он отличен от нуля и его порядок равен r. По теореме о базисном миноре r первых столбцов матрицы Ã линейно независимы, а остальные, в том числе и В, можно через них выразить, т. е. существует такой упорядоченный набор чисел , что . Итак, упорядоченный набор удовлетворяет уравнению (2.17), значит, является решением системы (2.16).◄


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал