Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Правило решения системы линейных уравнений
1. Вычисляем одновременно ранг матрицы системы и ранг расширенной матрицы, приводя матрицу А с помощью элементарных преобразований строк матрицы 2. Если 3. Если
Ее базисный минор расположен в первых Пример. Решим методом Гаусса систему линейных уравнений
▼ Составляем расширенную матрицу и приводим ее к простейшему виду методом опорного элемента. При этом всякий раз получаем матрицу системы, равносильной исходной. Поэтому между матрицами можно ставить знак равносильности. Опорный элемент будем подчеркивать двойной чертой.
Базисный минор можно выбрать, например, в первом, третьем и четвертом столбцах. Тогда базисными будут неизвестные
Общее решение выглядит так:
|