Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Блочные матрицы
Иногда по разным причинам матрицу удобно разбить на блоки. Полученная матрица, элементами которой являются опять же матрицы, называется блочной. Например, матрица В разбита на 4 блока, а матрица С – на 6: , . Заметим, что если − блочная матрица, то все её элементы − матрицы − при фиксированном i имеют одинаковое число строк, а при фиксированном j − одинаковое число столбцов. Если матрицы имеют одинаковые размеры и разбиты на блоки одинаковым образом, то их можно складывать по тому же принципу, что и обычные. Обычным образом блочные матрицы умножаются и на число. Умножаются блочные матрицы формально также как обычные. Пусть . Тогда . При этом необходимо, чтобы существовали все произведения . Например, запишем по такому правилу произведение приведенных блочных матриц В и С: . Убедимся в том, что в действительности . Посчитаем для проверки элемент . Чтобы его найти, следует сложить элементы матриц и , расположенные в первой строке и первом столбце. Итак, , что действительно совпадает с соответствующим элементом матрицы . Аналогично проверяется равенство остальных элементов. Для блочных матриц легко задается и операция транспонирования. Например, , т. е. блочная матрица транспонируется так же, как и обычная, только все её элементы также заменяются на транспонированные. Блочную матрицу будем называть блочно-диагональной, если при матрицы являются квадратными, их главные диагонали расположены на главной диагонали матрицы В, а при . В этом случае нет необходимости нумеровать диагональные блоки двумя индексами, достаточно одного. Блочно-диагональную матрицу с блоками на главной диагонали будем обозначать так: .
|