Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Блочные матрицы






Иногда по разным причинам матрицу удобно разбить на блоки. Полученная матрица, элементами которой являются опять же матрицы, называется блочной. Например, матрица В разбита на 4 блока, а матрица С – на 6:

,

.

Заметим, что если − блочная матрица, то все её элементы − матрицы − при фиксированном i имеют одинаковое число строк, а при фиксированном j − одинаковое число столбцов.

Если матрицы имеют одинаковые размеры и разбиты на блоки одинаковым образом, то их можно складывать по тому же принципу, что и обычные. Обычным образом блочные матрицы умножаются и на число.

Умножаются блочные матрицы формально также как обычные. Пусть . Тогда

.

При этом необходимо, чтобы существовали все произведения . Например, запишем по такому правилу произведение приведенных блочных матриц В и С:

.

Убедимся в том, что в действительности . Посчитаем для проверки элемент . Чтобы его найти, следует сложить элементы матриц и , расположенные в первой строке и первом столбце. Итак,

,

что действительно совпадает с соответствующим элементом матрицы . Аналогично проверяется равенство остальных элементов.

Для блочных матриц легко задается и операция транспонирования. Например,

,

т. е. блочная матрица транспонируется так же, как и обычная, только все её элементы также заменяются на транспонированные.

Блочную матрицу будем называть блочно-диагональной, если при матрицы являются квадратными, их главные диагонали расположены на главной диагонали матрицы В, а при . В этом случае нет необходимости нумеровать диагональные блоки двумя индексами, достаточно одного. Блочно-диагональную матрицу с блоками на главной диагонали будем обозначать так: .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал