Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства произведения матриц
1°. (AB) C = A (BC) – ассоциативность. Это свойство надо формулировать так: если определены произведения матриц AB и (AB) C, то определены и произведения BC и A (BC), причем (AB) C = A (BC). 2°. A (B + C) = AB + AC – дистрибутивность умножения относительно сложения. 3°. (a A) B = A (a B) = a(AB). 4°. EA = A; AE = A. Докажем первое свойство, остальные сформулируйте текстом и докажите самостоятельно – в качестве упражнения. Итак, доказательство ассоциативности: ► Пусть . Так как существует произведение АВ, то , значит, . Так как существует произведение , то , тогда . А значит, произведение определено. Пусть . Тогда определено и произведение . Таким образом, мы видим, что размеры матриц и совпадают, и для доказательства равенства этих матриц остается доказать равенство их соответствующих элементов. Приступаем к вычислениям: (1.5) . (1.6) На основании леммы 1.1, сравнивая (1.5) и (1.6), получаем : , и поэтому F = H. ◄
|