Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства произведения матриц






1°. (AB) C = A (BC) – ассоциативность.

Это свойство надо формулировать так: если определены произведения матриц AB и (AB) C, то определены и произведения BC и A (BC), причем (AB) C = A (BC).

2°. A (B + C) = AB + AC – дистрибутивность умножения относительно сложения.

3°. (a A) B = A (a B) = a(AB).

4°. EA = A; AE = A.

Докажем первое свойство, остальные сформулируйте текстом и докажите самостоятельно – в качестве упражнения. Итак, доказательство ассоциативности:

► Пусть . Так как существует произведение АВ, то , значит, . Так как существует произведение , то , тогда . А значит, произведение определено. Пусть . Тогда определено и произведение . Таким образом, мы видим, что размеры матриц и совпадают, и для доказательства равенства этих матриц остается доказать равенство их соответствующих элементов. Приступаем к вычислениям:

(1.5)

. (1.6)

На основании леммы 1.1, сравнивая (1.5) и (1.6), получаем

: ,

и поэтому F = H. ◄

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал