Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Примеры. 1. Вспомним, что в пространстве свободных векторов мы назвали базисом любую упорядоченную тройку некомпланарных (т
1. Вспомним, что в пространстве свободных векторов мы назвали базисом любую упорядоченную тройку некомпланарных (т. е. линейно независимых) векторов и показали, что всякий вектор можно по этому базису разложить. Таким образом, мы видим, что понятие базиса в произвольном линейном пространстве – это обобщение понятия базиса в пространстве свободных векторов. 2. Так как , то () – линейно независима. Кроме того, , а значит, система () является и системой образующих и поэтому базисом. 3. . Таким образом, (1, i) – система образующих в C над R, линейная независимость которой доказана в § 2. Следовательно – это и базис. 4. (3.20) Тогда
следовательно, (3.20) – система образующих пространства . В § 2 доказано, что эта система линейно независима, значит, она является и базисом линейного пространства . 5. Базисом в пространстве является фундаментальная система решений. 6. , (3.21) Очевидно, поэтому (3.21) – система образующих пространства . Так как эта система ещё и линейно независима (см. § 2), то она является базисом пространства . Этот базис впредь будем называть каноническим.
|