Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Правило нахождения присоединенных векторов
Обозначим А матрицу линейного оператора в некотором базисе, – координатный столбец вектора в том же базисе. Тогда в матричном виде уравнение для нахождения будет выглядеть так: что равносильно уравнению . Таким образом, видим, что для отыскания i -го присоединенного вектора к собственному вектору с собственным значением следует решить систему линейных уравнений с той же матрицей, что и для отыскания собственного вектора , но неоднородную, причем в качестве столбца свободных членов берется координатный столбец предыдущего присоединенного вектора. Пример. Найдем базис из собственных и присоединенных векторов линейного оператора , матрица которого в некотором базисе совпадает с матрицей ▼ Находим собственные значения.
. Таким образом, имеем единственное собственное значение, кратность которого равна 3. Определим количество собственных и присоединенных векторов. , , значит, в искомом базисе – один собственный вектор и два присоединенных. Находим собственный вектор, решая однородную систему с матрицей .
Получаем систему: В качестве собственного вектора можно взять, например, частное решение . Теперь находим первый присоединенный вектор, дописывая в цепочке (4.59) к матрице в качестве столбца свободных членов координатный столбец найденного собственного вектора и пересчитывая столбец свободных членов по намеченным стрелкам: . Получаем систему (4.60) Первый присоединенный вектор находим как частное решение системы (4.60): , а второй – как решение системы с той же матрицей, но в качестве столбца свободных членов уже дописываем координатный столбец вектора , и опять пересчитываем его по намеченным стрелкам: (4.61) Частное решение системы (4.61) и будет вторым присоединенным вектором: . Итак, искомый базис: – собственный; – 1-й присоединенный; – 2-й присоединенный векторы. ▲ Замечание. На практике все три цепочки объединяются в одну, новый столбец свободных членов дописывается к матрице предыдущей системы и пересчитывается по намеченным стрелкам.
|