Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Собственные векторы линейного оператора
Определение. Ненулевой вектор линейного пространства V над полем P называется собственным вектором линейного оператора , если существует такое число P, что = . (4.41) Число из равенства (4.41) называется собственным значением оператора f, соответствующим собственному вектору . Очевидно, все векторы линейного пространства являются собственными векторами нулевого оператора с собственным значением, равным 0, они же являются собственными векторами тождественного оператора с собственным значением, равным 1. Оператор проектирования трехмерного пространства на ось Оx имеет следующие собственные векторы: параллельные оси Оx – собственные с собственным значением, равным 1, а векторы, перпендикулярные оси Оx, – собственные с собственным значением, равным 0. При любом функция является собственным вектором (или собственной функцией) оператора дифференцирования , причем собственное значение равно .
|