![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свободная энергия в распределении Гиббса
Работу, произведенную над телом при бесконечно малом изотермическом обратимом изменении его состояния, можно написать в виде дифференциала некоторой величины:
dR=dE-dQ=dE-TdS=d(E-TS) или dR=dF где F=E-TS есть новая функция состояния тела, называемая его свободной энергией. Таким образом, работа, производимая над телом при обратимом изотермическом процессе, равна изменению его свободной энергии.
Энтропия тела может быть вычислена как среднее значение логарифма его функции распределения: Подставив сюда распределение Гиббса (1.5), получим откуда Таким образом, распределение Гиббса можно написать в виде
в котором оно наиболее часто и применяется. Тем же способом получим в классическом случае с помощью (7.12) выражение
Условие нормировки для распределения (31.1) гласит: или
Эта формула является основой для термодинамических применений распределения Гиббса. Она дает в принципе возможность вычислить термодинамические функции любого тела, если известен его энергетический спектр. Стоящую в (3.3) под знаком логарифма сумму обычно называют статистической суммой. Она представляет собой не что иное, как след оператора
Такая форма записи обладает тем преимуществом, что для вычисления следа можно пользоваться любой полной системой волновых функций. Аналогичная формула в классической статистике получается из условия нормировки для распределения (3.2). Предварительно, однако, необходимо учесть следующее обстоятельство, которое было несущественно до тех пор, пока мы интересовались функцией распределения как таковой и не связывали нормировочный коэффициент с определенной количественной характеристикой тела — его свободной энергией. Если, например, переменить местами два одинаковых атома, то после такой перестановки микросостояние тела будет изображаться другой фазовой точкой, получающейся из первоначальной заменой координат и импульсов одного атома координатами и импульсами другого. С другой стороны, ввиду одинаковости переставляемых атомов оба состояния тела физически тождественны. Таким образом, одному и тому же физическому микросостоянию тела в фазовом пространстве соответствует целый ряд точек. Между тем, при интегрировании распределения (3.2) каждое состояние должно, разумеется, учитываться лишь однократно. Другими словами, мы должны интегрировать лишь по тем областям фазового пространства, которые соответствуют физически различным состояниям тела; мы будем отмечать это обстоятельство штрихом у знака интеграла. Таким образом, получим формулу
здесь и везде в аналогичных случаях ниже посредством Фазовый объем
Таким образом, статистическая сумма квантовой формулы (3.3) заменяется статистическим интегралом. Классическая энергия При фактическом вычислении статистического интеграла обычно бывает удобным расширить область интегрирования, вводя при этом соответствующий поправочный множитель. Пусть, например, речь идет о газе, состоящем из Аналогичным образом удобно расширить область интегрирования для газа, состоящего из N одинаковых молекул: по координатам молекул как целых (по координатам их центров инерции) интегрируем независимо по всему объему, а по внутримолекулярным координатам атомов — в каждой молекуле по ее собственному “объему” (т. е. по небольшой области, в которой могут еще с заметной вероятностью находиться составляющие молекулу атомы); после этого интеграл снова должен быть поделен на
|