Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Слайд 1Стр 1 из 23Следующая ⇒
Тема 7 Статистические методы изучения взаимосвязи социально-экономических явлений 7.1 Понятие корреляционно-регрессионного анализа 7.2 Корреляционный анализ (парный) 7.3 Регрессионный анализ (парный) 7.4 Множественный КРА
Понятие корреляционно-регрессионного анализа Исследуя явления в самых различных областях, статистика сталкивается с зависимостями как между количественными, так и между качественными показателями, признаками. При этом задача статистики – обнаружить (выявить) такие зависимости и дать их количественную характеристику. Там, где взаимодействует множество факторов, в т.ч. и случайных, выявить зависимости, рассматривая единичный случай, невозможно. Такие связи можно обнаружить только при массовом наблюдении как статистические закономерности (на основе изучения особенностей распределения, поведения средних и др. показателей). Выявленная таким образом связь именуется статистической или стохастической. СЛАЙД 1 Корреляционная связь (частный случай стохастической) – связь, проявляющаяся при достаточно большом числе наблюдений в виде определенной зависимости между средним значением результативного признака и признаками-факторами. Изучение корреляционных связей сводится в основном к решению следующих задач: Ø выявление наличия (или отсутствия) корреляционной связи между изучаемыми признаками. Эта задача может быть решена на основе параллельного сопоставления (сравнения) значений х и у у n единиц совокупности; с помощью группировок; построения и анализа специальных корреляционных таблиц; а также построения диаграмм рассеяния; Ø измерение тесноты связи между двумя (и более) признаками с помощью специальных коэффициентов. Эта часть исследования называется корреляционный анализ; Ø определение уравнения регрессии – математической модели, в которой среднее значение результативного признака у рассматривается как функция одной или нескольких переменных – факторных признаков. Эта часть исследования называется регрессионный анализ. Задача корреляционного анализа – измерение тесноты связи между варьируемыми признаками и оценка факторов, оказывающих наибольшее влияние. Задача регрессионного анализа – выбор типа модели (формы связи), устанавливающих степени влияния независимых переменных. Связь признаков проявляется в их согласованной вариации, при этом одни признаки выступают как факторные, а другие – как результативные. Причинно-следственная связь факторных и результативных признаков характеризуется по степени: · тесноты; · направлению; · аналитическому выражению.
|