яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






гЛАВА 4 ТРАНСПОРТ ЧЕРЕЗ МЕМБРАНУ КЛЕТКИ






Вход и выход ионов через каналы в мембране нейрона имеет пассивный характер и происходит благодаря наличию электрических и химических градиентов. Для компенсации результатов передвижения ионов клетка использует активные транспортные механизмы, которые затрачивают энергию на перемещение ионов в направлении, противоположном их электрохимическим потенциалам. Таким образом, концентрации ионов в цитоплазме поддерживаются на постоянном уровне, что позволяет сохранить неизменным потенциал покоя, а также генерировать электрические сигналы.

Первичный активный транспорт осуществляется за счет энергии гидролиза АТФ. Наиболее распространенный пример такого транспорта — натрий-калиевый обменник, или насос. Специальная молекула, называемая натрий-калиевой АТФазой, осуществляет за счет энергии расщепления одной молекулы АТФ перенос трех ионов натрия наружу и двух ионов калия внутрь клетки. Поскольку в результате каждого транспортного цикла происходит изменение суммарного трансмембранного заряда на единицу, натрий-калиевый насос является электрогенным, то есть производит электричество. Другой пример активного ионного транспорта — АТФазы, выводящие кальций из цитоплазмы: кальциевые АТФазы плазматической мембраны выкачивают кальций за пределы клетки, а АТФазы эндоплазматического и саркоплазматического ретикулумов закачивают кальций из цитоплазмы во внутриклеточные структуры.

Вторичный активный транспорт основан на энергии передвижения ионов натрия в направлении их электрохимического градиента. При этом другие ионы переносятся за счет движения ионов натрия либо в том же (ко-транспорт), либо в обратном направлении (ионообмен). Примером такого механизма является натрий-кальциевый обменник, выводящий один ион кальция за счет входа в клетку трех ионов натрия. Как и все системы активного транспорта, этот обменник обратим и может работать как в прямом, так и в обратном направлении, в зависимости от соотношения электрических и химических градиентов для обоих ионов. Вторая система натрий-кальциевого обмена встречается в клетках сетчатки и осуществляет перенос одного иона кальция и одного иона калия наружу, в обмен на четыре входящих иона натрия. Энергия входа натрия в клетку используется также для переноса ионов хлора и бикарбоната через клеточную мембрану. Все вышеперечисленные механизмы основаны на передвижении натрия в направлении его электрохимического градиента и, следовательно, зависят от эффективности работы натрий-калиевого насоса, обеспечивающего поддержание этого градиента.

Транспорт медиаторов необходим для функционирования нейронов. Накопление молекул медиатора в синаптических пузырьках (везикулах) в цитоплазме пресинаптического окончания невозможно без такого транспорта, основанного на перемещении ионов (ионно-сопряженный транспорт). Подобный же механизм используется для обратной закачки медиатора после его выброса в синаптическую щель.

На сегодняшний день выделен и клонирован целый ряд транспортных АТФаз и высказаны предположения об их конфигурации в клеточной мембране. Все АТФазы состоят из 10-12 трансмембранных сегментов, которые, по всей вероятности, образуют канало-подобные структуры. Передвижение веществ по этим каналам происходит в результате выдвижения участков, соответствующих местам связывания ионов, поочередно то во внеклеточную, то во внутриклеточную среды.


Глава 4. Транспорт через мембрану клетки                                              71

В главе 2 обсуждался механизм генерации электрических сигналов при перемещении ионов через каналы в плазматической мембране. Так, например, движение положительных ионов натрия внутрь клетки приводит к снижению суммарного негативного заряда на внутренней стороне мембраны, то есть приводит к ее деполяризации. Напротив, вход в клетку отрицательно заряженных ионов хлора влечет за собой гиперполяризацию. Движение ионов через каналы носит пассивный характер и обусловлено наличием электрических и концентрационных градиентов на мембране. При отсутствии компенсирующих процессов такое передвижение ионов очень скоро привело бы к полному исчезновению электрохимических градиентов.

Существует, однако, целый ряд механизмов активного транспорта, которые перемещают ионы в направлении, противоположном электрохимическому градиенту. Эти механизмы компенсируют утечку ионов, происходящую как в покое, так и в результате электрической активности. Активный транспорт подразделяется на первичный и вторичный. Первичный транспорт происходит за счет прямого использования метаболической энергии, а именно, энергии расщепления АТФ. Вторичный активный транспорт использует энергию потока ионов (чаще всего ионов натрия) в направлении их электрохимического градиента для перемещения других ионов через мембрану либо в том же (ко-транспорт), либо в противоположном направлении (ионообмен).


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2024 ЦНД. (0.006 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК