яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






уРАВНЕНИЕ ПОСТОЯННОГО ПОЛЯ






Для того чтобы вычислить точное значение мембранного потенциала для модели идеальной клетки, необходимо принять во внимание отдельные ионные токи, протекающие через мембрану. Входящий натриевый ток (i Na) зависит от величины движущей силы для ионов натрия (Vm— ENa) (глава 2), а также от натриевой проводимости мембраны (gNa). Проводи-


Глава 5. Ионные механизмы потенциала покоя                                            95

Рис. 5.4. Зависимость мембранного потенциала от внеклеточной концентрации калия на аксоне кальмара (полу-логарифмическая шкала). Прямая линия проведена под углом наклона, равным 58 мВ на десятикратное изменение внеклеточного уровня калия, в соответствии с уравнением Нернста. Благодаря наличию мембранной проницаемости для натрия, экспериментальные данные расходятся с прямой линий, особенно при низких концентрациях калия. Fig. 5.4. Membrane Potential versus External Potassium Concentration in squid ixon, plotted on a semilogarithmic scale. The straight line is drawn with a slope of 58 mV per 10-fold change in extracellular potassium concentration, according to the Nernst equation. Because the membrane is also permeable to sodium, the points deviate from the straight line, especially at low potassium concentrations. (After Hodgkin and Keynes, 1955.)

мость пропорциональна среднему количеству натриевых каналов, находящихся в открытом состоянии при потенциале покоя: чем больше открытых каналов, тем выше проводимость. Таким образом, натриевый ток равен:

Тот же подход справедлив и для калия и хлора:

Если принять i Cl, = 0 (т. е. ионы хлора находятся в равновесии), то, для сохранения неизменного значения мембранного потенциала, калиевый и натриевый токи должны быть равны по величине и противоположны по направлению:

Рассмотрим это уравнение более подробно. Предположим, что g Kзначительно больше g Na. Тогда, для того чтобы токи были равны, движущая сила для выхода калия должна быть значительно меньше движущей силы для натриевого входа. Другими словами, мембранный потенциал должен быть ближе к Е K, чем к ENa. Соответственно, если значение g Na велико, то мембранный потенциал будет ближе к ENa.

Преобразовав выражение, получим формулу для мембранного потенциала:

Если по той или иной причине ионы хлора не находятся в равновесии, то формула приобретает несколько более сложный вид:

Вышеприведенные расчеты были первоначально проведены Голдманом4) и, независимо от него, Ходжкином и Катцем5), с той лишь разницей, что вместо равновесных потенциалов и проводимостей они оперировали ионными концентрациями снаружи ([Na]0,...) и внутри ([Na]i,...) клетки, а также проницаемостью мембраны для каждого из ионов (p Na···):

Так же как и ранее, хлорные компоненты выражения не рассматриваются, если ионы хлора находятся в равновесии. Уравнение называется «уравнением ГХК» по фамилиям авторов, или уравнением постоянного поля, поскольку одним из допущений при выводе уравнения является равномерное распределение градиента напряжения (т.е. «поля») на всем протяжении мембраны. Уравнение ГХК полностью аналогично уравнению проводимостей, на его основании можно сделать те же предсказания: когда проницаемости для натрия и хлора малы по сравнению с калиевой проницаемостью, хлорный и натриевый компоненты уравнения становятся пренебрежимо малы, и мембранный потенциал стремится к значению равновесного потенциала для


96                                       Раздел II. Передача информации в нервной системе

Рис. 5.5. Пассивные ионные токи и работа насосов в состоянии покоя. Пунктирные стрелки указывают направление пассивного движения ионов через мембрану клетки, а сплошные — направление переноса ионов транспортными системами. Длина стрелки отражает относительную величину суммарного переноса заряда. Суммарный ток для каждого иона равен нулю. Например, суммарный пассивный вход натрия равен по величине транспорту этого иона из клетки наружу. Транспорт Na: К осуществляется в соотношении 3: 2. В зависимости от конкретной клетки транспорт хлора может быть выходящим (как показано на рисунке) или входящим.

Fig. 5.5. Passive Ion Fluxes and Pumps in a Steady State. Net passive ion movements across the membrane are indicated by dashed arrows, transport systems by solid arrows and circles. Lengths of arrows indicate the relative magnitudes of net ion movements. Total flux is zero for each ion. For example, the net inward leak of Na+ is equal to the rate of outward transport. Na: К transport is coupled with a ratio of 3: 2. In any particular cell. Cl--transport may be outward (as shown) or inward.

калия: Vm = 58 log([K]0/[K]1). При увеличении натриевой проницаемости мембранный потенциал сдвигается в сторону натриевого равновесного потенциала.

Из уравнения постоянного поля следует один важный принцип. Мембранный потенциал зависит от проводимости (или проницаемости) мембраны для важнейших ионов, а также от их равновесных потенциалов. В реальных клетках проводимости для калия и хлора сравнительно· высоки, поэтому потенциал покоя клетки близок к равновесным потенциалам для этих двух ионов. При увеличении натриевой проводимости, например, во время потенциала действия (глава 6) или возбуждающего постсинаптического потенциала (глава 9), мембранный потенциал сдвигается в сторону натриевого равновесного потенциала.


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2025 ЦНД. (0.006 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК