яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






еМКОСТЬ В КАБЕЛЕ






Каково влияние постоянной времени на ток в кабеле? Как и в случае простой RC-цепочки (рис. 7.2С), нарастание и спад потенциала в ответ на скачкообразное изменение тока замедляется благодаря наличию конденсатора. Ситуация осложняется тем, что ток течет уже не через один конденсатор, но каждый сегмент цепочки является одним из резистивно-емкостных элементов, взаимодействующих между собой. Благодаря этим взаимодействиям временной ход в отдельном сегменте нельзя описать простой экспонентой, и фазы роста и спада замедляются по мере удаления от точки инъекции тока (рис. 7.3). Поскольку скорость нарастания потенциала зависит от расстояния между отводящим электродом и местом инъекции тока, постоянную времени спада уже нельзя рассчитать на основе простого измерения времени 63 %-ного роста потенциала, за исключением единственной точки вдоль волокна, в которой это расстояние равно постоянной длины.

Обратимся к рассмотрению движения ионов. Если в аксон инъецирован положительный ток, внутриклеточные ионы (главным образом, калия) будут распространяться вдоль волокна. Некоторая часть ионов уйдет на изменение заряда на емкости мембраны, другая часть будет протекать по мембранному сопротивлению. Одновременно с этим процессом будет происходить перемещение отрицательных ионов в противоположном направлении. Постепенно потенциал на мембране достигнет нового устойчивого значения, емкости, распределенные по мембране, будут полностью заряжены до нового уровня потенциала, а через мембрану будет протекать постоянный ионный ток. Время, необходимое для достижения нового устойчивого состояния, определяется постоянной времени.

Еще одно следствие наличия мембранной емкости заключается в том, что короткие сигналы распространяются на более короткие расстояния, чем длительные сигналы. В случае достаточной длительности сигнала, в течение которого потенциал успевает достигнуть своего максимального значения, емкость заряжается полностью, и пространственное распределение потенциала определяется сопротивлениями мембраны и цитоплазмы: Vx = V 0 ε x/l. Для коротких импульсов, таких как синаптический потенциал, ток прекращается еще до того, как емкость успевает полностью зарядиться. Это выражается


Глава 7. Нейроны кок проводники электричество                                       133

Рис. 7.4. Мембранный ток во время прохождения потенциала действия. Fig. 7.4. Current Flow during an Action Potential at an instant in time. Rapid depolarization during the rising phase of the action potential is due to the influx of positively charged sodium ions. The positive current spreads ahead of the impulse to depolarize the adjacent segment of membrane toward threshold. Repolarization on the falling phase is due to the efflux of potassium ions.

в уменьшении расстояния, на которое потенциал распространяется вдоль волокна. Другими словами, эффективная постоянная длины для коротких сигналов меньше, чем для длительных. Кроме того, форма коротких сигналов искажается по мере их перемещения по волокну, а их амплитуда снижается за счет «закругления» пика, достигаемого все позднее и позднее.


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2025 ЦНД. (0.005 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК