яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






Sect;4. тОКИ, ПРОТЕКАЮЩИЕ МЕЖДУ КЛЕТКАМИ






В большинстве случаев электрический ток не может течь напрямую с одной клетки на другую. Существуют, однако, электрически сопряженные клетки. Свойства и функции электрических синапсов описаны в главе 9. Здесь речь пойдет об особых межклеточных структурах, обеспечивающих электрическую непрерывность между ними.

структуры, обеспечивающие электрическое сопряжение: щелевые соединения

В местах электрического сопряжения межклеточный ток протекает через щелевые соединения 35). Щелевым соединением называется участок тесного контакта мембран двух клеток, в каждой из которых имеется скопление особых частиц, собранных в гексагональные структуры (рис. 7.8). Каждая частица, именуемая коннексоном, состоит из шести белковых субъединиц, образующих круг с внешним диаметром около 10 нм и внутренним диаметром 2 нм36·37). На сопряженной клетке находится точно такая же структура. Совместно они пронизывают зазор между мембранами (2-3 нм). Полость в сердцевине соединенных коннексонов способствует перемещению ионов и мелких молекул между клетками. Проводимость одиночного канала, образованного двумя сопряженными молекулами коннексона, составляет около 100 пСм38'.

Целый ряд белковых субъединиц коннексона (коннексонов) массой 26-56 кД был изолирован и клонирован36·39'. Названия соответствуют массе: например, коннексон-32 (32 кД) найден в печени крысы, коннексон-43 — в сердечной мышце, и т.д. Гидропатический анализ (глава 3) указывает на то, что коннексоны состоят из четырех спиральных сегментов, пронизывающих мембрану. Исследования с применением антител подтвердили, что N-конец и С-конец коннексонов расположены в цитоплазме. В каждом типе ткани в формировании коннексона участвует один или, возможно, всего несколько типов коннексонов, однако функциональное сопряжение возможно: например, когда иРНК для коннексона-32 инъецирована в одну из клеток, а для коннексона-42 — в другую, сопряженную с первой40). Сформировать щелевое соединение можно искусственно, инъецировав иРНК в два соприкасающихся ооцита Xenopus**). Важнейшим неразрешенным вопросом остается то, каким образом коннексоны на двух сопряженных клетках находят друг друга, а затем подстраивают свое положение друг под друга, не формируя при этом поры между цитоплазмой и внеклеточной средой.

выводы

∙ Распространение местных подпороговых потенциалов в нейронах, а также продвижение потенциала действия вдоль нервного волокна, зависит от электрических свойств цитоплазмы и мембраны клетки.

∙ При инъекции постоянного тока в цилиндрическое волокно величина местного потенциала определяется входным сопротивлением волокна (r inрut), а также расстоянием, на которое он может распространиться, определяемым постоянной длины (l).


Глава 7. Нейроны как проводники электричества 141

∙ Входное сопротивление и постоянная длины зависят, в свою очередь, от удельного сопротивления мембраны (Rm) и аксоплазмы (R i ), а также диаметра волокна.

∙ Кроме резисторных, мембрана облвдает емкостными свойствами. Емкость мембраны т) проявляется в замедлении фаз роста и спада электрических сигналов. Величина этого эффекта определяется выражением: t = RmCm.

Распространение потенциала действия вдоль волокна зависит от пассивного перемещения тока от активного участка мембраны к соседнему. Скорость проведения зависит от постоянной времени и постоянной длины мембраны.

∙ Крупные нервные волокна позвоночных завернуты в миелиновую оболочку, выработанную шванновскими клетками. Оболочка прерывается через равные промежутки, образуя перехваты Ранвье. Во время прохождения возбуждения потенциал

действия «перескакивает» с одного перехвата на другой (явление сальтаторного проведения).

∙ Распространение потенциала действия сильно зависит от геометрических факторов, связанных с изменением площади поверхности мембраны. Распространение может быть прерванным в точках ветвления нервного окончания, и перемещение возбуждения в разветвленных дендритах может иметь предпочтительные направления.

∙ Перенос электрического заряда с одной клетки на другую происходит в местах межклеточных контактов, обладающих низким сопротивлением и называемых щелевыми соединениями. Эти соединения образованы скоплениями коннексонов, белковых молекул, способных формировать водные поры между цитоплазмами смежных клеток.


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2025 ЦНД. (0.007 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК