цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ йюрецнпхх: юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ |
гЛАВА 14. нЕЙРОМЕДИАТОРЫ В ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЕ
Эта глава посвящена функциональной роли отдельных медиаторов в центральной нервной системе. Важные данные о функции медиаторов можно получить из исследований их распределения в нервной системе, эффектов веществ, влияющих на их синтез, хранение, высвобождение или действие медиаторов, а также из экспериментов, в которых белки, участвующие в этих процессах, изменены с помощью мутаций или технологии нокаута. Такие исследования дают ключ к пониманию биохимических механизмов, лежащих в основе нарушения функции нервной системы, и предлагают новые пути их терапии. g-аминомасляная кислота (ГАМК) обеспечивает тормозные эффекты в ЦНС с помощью трех классов рецепторов. Наиболее распространенными являются ГАМКА рецепторы. В ответ на действие ГАМК эти рецепторы увеличивают проводимость мембраны для ионов хлора. Активность Γ Α Μ Κ Α рецепторов модулируется веществами антиконвульсантами, такими как барбитураты и бензодиазепины. Глутамат является основным возбуждающим медиатором в ЦНС. Он взаимодействует с двумя классами ионотропных рецепторов, различающихся по типу агонистов, которые могут их активировать, и по их относительной проницаемости для кальция. ГАМК и глутамат действуют также на метаботропные рецепторы. Ацетилхолин действует как медиатор во многих отделах мозга через метаботропные мускариновые рецепторы. Кроме того, активность ЦНС модулируется через никотиновые рецепторы, расположенные в пресинаптической мембране. Базальные ядра переднего мозга осуществляют мощную и диффузную холинергическую иннервацию коры и гиппокампа. В холинергической системе базальных ядер проявляются выраженные дегенеративные изменения при болезни Альцгеймера, хотя это заболевание затрагивает и нейроны, высвобождающие другие медиаторы. Действуя на ионотропные или метаботропные рецепторы, АТФ является модулятором или непосредственным медиатором синаптической передачи в ЦНС. Аденозин модулирует процессы передачи информации в ЦНС, взаимодействуя с метаботропными рецепторами. Данные по исследованию болевой чувствительности вызвали значительный интерес к субстанции Ρ и опиоидным пептидам. Субстанция Ρ высвобождается первичными афферентными волокнами, которые отвечают на болевой стимул. Энкефалин, опиоидный пептид, высвобождаемый интернейронами спинного мозга, подавляет болевую чувствительность, блокируя высвобождение субстанции Ρ из окончаний первичных афферентов. Другие опиоидные пептиды действуют в синапсах мозга, изменяя наше восприятие боли. Помимо болевой чувствительности субстанция Ρ и опиоидные пептиды участвуют и в других функциях нервной системы. Отличительной чертой распределения в ЦНС норадреналина, дофамина, адреналина, серотонина и гистамина является то, что лишь небольшое число нейронов высвобождает эти амины в качестве медиаторов. Однако эти нейроны настолько сильно разветвляются, что каждый нейрон посылает буквально тысячи отростков по всей ЦНС. Такая морфология сочетается с физиологической ролью моноамин-содержащих нейронов в модулировании синаптической активности в различных областях ЦНС, в результате чего они регулируют такие глобальные функции, как внимание, пробуждение, цикл сон-бодрствование и настроение. Сложность и пластичность синаптических связей в центральной нервной системе создают физический субстрат поведения. Поэтому знание медиаторов, участвующих в функционировании синапса, и механизма их действия является центральным моментом для понимания деятельности мозга. Кроме того, пути синтеза и распада каждого нейромедиатора Глава 14. Нейромедиаторы в центральной нервной системе 293
представляют собой потенциальную мишень для фармакологических воздействий, позволяющих корректировать нарушения медиаторного баланса, возникающие при различных заболеваниях. Более широкие возможности для фундаментальных и клинических исследований появляются в связи с наличием большого разнообразия мембранных рецепторов для каждого типа медиаторов, идентифицированных с помощью методов молекулярного клонирования. Однако новые знания, полученные с помощью методов молекулярной генетики, не могут быть использованы без установления принадлежности к определенному классу нейромедиаторов, механизма действия и распределения медиаторов в центральной нервной системе. Материал этой главы в некоторой степени повторяет информацию, представленную в главах 3 и 13. Здесь, однако, мы хотим обратить ваше внимание на типы нейронов, которые содержат различные медиаторы, и их распределение в центральной нервной системе. Начнем с методов выявления медиаторов, которые используются для картирования распределения нейронов, высвобождающих отдельные медиаторы. Эти методы суммарно представлены на рис. 14.1. Они включают визуализацию медиатора как такового, мечение одного из белков, участвующих в синтезе, действии или деградации медиатора, и выявлении мРНК для этих белков. Идентификация предполагаемых генов позволяет создавать трансгенных животных или использовать антисенс--нуклеотиды (antisense nucleotides) для блокады специфичной мРНК. Безусловно, такая информация дает возможность предлагать новые методы терапевтических воздействий для лечения дефектов центральной нервной системы с помошью методов генной инженерии и переноса генов.
|