цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ йюрецнпхх: юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ |
кОРОТКИЕ И ДЛИННЫЕ РЕЦЕПТОРЫ
Рецепторный потенциал, генерируемый в процессе трансдукции стимула, отражает интенсивность и длительность исходного раздражителя. В некоторых рецепторах, таких как палочки и колбочки в сетчатке, которые не имеют длинных аксонов, рецепторные потенциалы распространяются пассивно, от чувствительной зоны клетки к ее синаптической зоне (рис. 17.1А). Такие рецепторы известны как короткие рецепторы. Переход информации от рецепторного конца к синаптическому концу клетки не требует участия потенциалов действия. В некоторых клетках пассивное распространение рецепторного потенциала может достигать удивительно отдаленных точек. Например, в механорецепторах некоторых ракообразных4) и пиявок5) и в фоторецепторах глаза морской уточки (barnacle) 6) рецепторный потенциал распространяется пассивно на расстояние нескольких миллиметров. В таких клетках сопротивление мембра- Глава 17. Трансдукция механических и химических стимулов 363
ны, а следовательно, и константа длины распространения пассивной деполяризации, необычайно высоки. Хотя рецепторные потенциалы обычно являются деполяризационными, некоторые короткие рецепторы реагируют на свои адекватные раздражители гиперполяризационным изменением потенциала. Это происходит, к примеру, в фоторецепторах сетчатки позвоночных (глава 19) и в кохлеарных волосковых клетках, в которых возникают как гиперполяризационные, так и деполяризационные ответы. Независимо от того, какова полярность рецепторного потенциала, короткие рецепторы тонически высвобождают нейромедиатор из своих синаптических зон; при этом деполяризация усиливает, а гиперполяризация снижает исходный уровень высвобождения. В длинных рецепторах (рис. 17.1В), таких как рецепторы кожи или мышц, информация от одиночного рецептора может посылаться на гораздо большие расстояния, чтобы достичь сенсорных клеток второго порядка (например, от большого пальца ноги к спинному мозгу). Чтобы обеспечить это, рецептор совершает второе преобразование: рецепторный потенциал дает начало последовательности потенциалов действия, длительность и частота которой кодируют информацию о длительности и интенсивности исходного стимула. Затем этот импульсный разряд переносит данную информацию к синаптическим окончаниям клетки. Частотное кодирование интенсивности стимула обеспечивается путем взаимодействия между стационарным рецепторным током от сенсорных окончаний и сдвигами проводимости во время потенциала действия. Повышение калиевой проводимости, происходящее во время фазы восстановления в конце каждого потенциала действия, гиперполяризует мембрану, смещая мембранный потенциал в направлении Е К(калиевого равновесного потенциала). Это увеличение калиевой проводимости, однако, весьма кратковременно, в результате чего поддерживаемый за счет постоянного растяжения трансдукционный ток вновь деполяризует мембрану до уровня генерации импульса. Чем сильнее рецепторный ток, тем скорее вновь достигается пороговый уровень генерации разряда и тем выше становится частота импульсации. Подобный анализ применим также ко всем нейронам, в которых любой синаптический вход, по аналогии 364 Раздел III. Интегративные механизмы
с рецепторным потенциалом, влияет на изменение частоты потенциалов действия.
|