цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ йюрецнпхх: юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ |
гЛАВА 24. дЕНЕРВАЦИЯ И РЕГЕНЕРАЦИЯ СИНАПТИЧЕСКИХ СВЯЗЕЙ
В нервной системе позвоночных при нарушении целостности аксона происходит дегенерация дистальной части этого отростка. Кроме того, развивается комплекс дегенеративных явлений в самом поврежденном нейроне, в иннервируемой им клетке, а также в нейроне, являющемся пресинаптическим по отношению к поврежденному. Изменения происходят вследствие нарушения аксонального транспорта трофических факторов, которые контролируют нейрональную дифференцировку и выживание нейронов, а также как результат перестройки паттерна электрической активности. Волокна скелетной мышцы позвоночных после денервации становятся более чувствительными к ацетилхолину и начинают экспрессировать ацетилхолиновые рецепторы по всей своей поверхности. Прямая электрическая стимуляция денервированных гиперчувствительных мышц приводит к сужению участка, чувствительного к ацетилхолину, до размеров исходной концевой пластинки. Активность мышцы влияет также на скорость оборота ацетилхолиновых рецепторов. Эффекты активности опосредуются входом ионов кальция в клетку и активацией внутриклеточных вторичных посредников. В отличие от иннервированных мышечных волокон, денервированные мышцы допускают иннервацию в любом месте своей поверхности. Денервированные мышечные волокна не только обладают повышенной склонностью к реиннервации, но даже стимулируют неповрежденные нервные окончания к разрастанию и формированию новых отростков (спраутинг). Подобным же образом нейроны, лишенные иннервации, становятся гиперчувствительными к трансмиттерам и стимулируют развитие близлежащих нервных окончаний. Способность поврежденных аксонов к регенерации и реиннервации исходных мишеней колеблется в широких пределах от вида к виду. У безпозвоночных и низших позвоночных, таких как лягушки и тритоны, поврежденные аксоны успешно регенерируют и с высокой точностью восстанавливают исходные синаптические контакты. К этому способны и аксоны у эмбрионов и новорожденных высших позвоночных, включая млекопитающих. У высших позвоночных аксоны периферической нервной системы взрослых животных также отрастают после их повреждения. Если периферический нерв был передавлен, регенерирующие аксоны направляются к их исходным периферическим мишеням с помощью эндоневрия и базальной мембраны шванновских клеток. В результате этого возможно полное восстановление потерянной функции. Если же периферический нерв был перерезан, реиннервация мишеней бывает часто неполная и неточная. Аргин и другие факторы, ассоциированные с синаптической частью базальной мембраны мышечного волокна, инициируют образование специализированных пре--и постсинаптической структур в регенерирующем нерве и мышечных клетках. Для центральной нервной системы взрослых млекопитающих способность к регенерации весьма ограничена. Нейроны ЦНС взрослых млекопитающих обладают способностью к спраутингу и формированию новых синапсов только на коротких дистанциях. Рост аксонов на большие расстояния может происходить или через трансплантаты, полученные из периферических нервов, или через неповрежденные участки ЦНС. Кроме того, эмбриональные нейроны и стволовые клетки, имплантированные в ЦНС взрослых животных, способны к дифференцировке, удлинению отростков и могут адекватно интегрироваться в сохранившиеся нейрональные сети. Техника трансплантации позволяет надеяться на преодоление функционального дефицита, возникающего в результате повреждений ЦНС и нейродегенеративных заболеваний. Глава 24. Денервоция и регенерация синоптических связей 577 Нервная система многих видов имеет поразительную способность успешно восстанавливать специфические синаптические соединения, которые были нарушены в результате травмы. Регенеративные способности нейронов ЦНС впервые были продемонстрированы Матти, который в 1920-х годах рассек оптический нерв тритона и обнаружил, что зрение у этого животного было восстановлено в течение нескольких недель после операции1). В начале 1940-х годов Сперри, Стоун и их коллеги, используя эти регенеративные возможности, исследовали, по какому механизму формируются специфические соединения в нервной системе. Их эксперименты по регенерации зрительной системы лягушек и рыб подтвердили идею, согласно которой нейроны селективно иннервируют свои мишени уже во время регенерации, а не создают первичные случайные контакты, реорганизуемые позднее2). Позже детальные исследования, проведенные на пиявках, сверчках и речных раках, убедительно продемонстрировали, что аксоны идентифицированных нейронов безпозвоночных после перерезки способны найти и точно соединиться с исходными синаптическими партнерами, игнорируя множество других потенциальных мишеней. В противоположность этому, регенерация поврежденных нервных соединений в нервной системе взрослого млекопитающего либо является лишь частичной, либо отсутствует вовсе. В этой главе мы опишем изменения, которые происходят в нейроне и окружающих глиальных клетках после пересечения аксона, а также эффекты денервации, развивающиеся в постсинаптических клетках-мишенях. Затем мы рассмотрим способность нейронов развивать новые аксоны, восстанавливать синаптические контакты с клетками-мишенями и компенсировать утраченные функции. Наконец, мы обсудим возможность восстановления нейронов, утраченных в результате травмы или заболевания.
|