Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основное соотношение.
Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов. Формула вычисления угла между векторами
18..
19… Пусть в евклидовом пространстве известным образом задано скалярное произведение . Матрицей Грама системы векторов называется квадратная матрица, состоящая из всевозможных скалярных произведений этих векторов: Матрица Грама является симметричной матрицей. Ее определитель называется определителем Грама (или грамианом) системы векторов : 20… Ортонормированная система, состоящая из n векторов n -мерного евклидова пространства, образует базис этого пространства. Такой базис называется ортонормированным базисом. Если e 1, e 2, ..., e n — ортонормированный базис n -мерного евклидова пространства и x = x 1 e1 + x 2 e2 +... + xn e n — разложение вектора x по этому базису, то координаты x i вектора x в ортонормированном базисе вычисляются по формулам x i =(x, e i), i = 1, 2,..., n.
Процесс Грама ― Шмидта ― наиболее известный алгоритм ортогонализации, при котором полинейно независимой системе строится ортогональная система такая, что каждый вектор линейно выражается через , то есть матрица перехода от к ― верхнетреугольная матрица. При этом можно добиться того, чтобы система была ортонормированной и чтобы диагональные элементы матрицы перехода были положительны; этими условиями система и матрица перехода определяются однозначно. Этот процесс применим также и к счётной системе векторов. Процесс Грама ― Шмидта может быть истолкован как разложение невырожденной квадратной матрицы в произведение ортогональной (или унитарной матрицы в случае эрмитова пространства) и верхнетреугольной матрицы с положительными диагональными элементами, что есть частный случайразложения Ивасавы. Алгоритм Полагают , и, если уже построены векторы , то Геометрический смысл описанного процесса состоит в том, что на каждом шагу вектор является перпендикуляром, восстановленным к линейной оболочке векторов до конца вектора . Нормируя полученные векторы , получают искомую ортонормированную систему . 21…
|