Дослідження загального рівняння площини
| Исследование общего уравнения плоскости
| Invè stigá tion of the gé ne-ral equá tion of a plá ne
|
Канонічні рівняння пря-мої
| Канонические уравне-ния прямой
| Canó nical equá tions of a straight lí ne
|
Напрямний вектор пря-мої
| Направляющий вектор прямой
| Diré ction vé ctor of the straight line
|
Необхідна і достатня умова паралельності [перпендикулярності] двох площин, двох прямих, прямої і площини
| Необходимое и доста-точное условие парал-лельности [перпендику-лярности] двух плоско-стей, двух прямых, пря-мой и плоскости
| Né cessary and suffí cient condí tion for pá rallelism [pé rpendì culá rity] of two planes, of two straight lines, of a straight lí ne and a sú rface
|
Нормальний вектор (до) площини
| Нормальный вектор пло-скости
| Nó rmal vé ctor of/to the plá ne
|
Загальне рівняння пло-щини
| Общее уравнение плос-кости
| Gé neral equá tion of a plá -ne
|
Загальні рівняння прямої
| Общие уравнения пря-мой
| Gé neral equá tions of a straight line [straight line gé neral equá tions]
|
Параметричні рівняння прямої
| Параметрические урав-нения прямой
| Pà ramé tric equá tions of a straight line
|
Перехід від … до …(від загальних рівнянь прямої до параметричних/кано-нічних)
| Переход от…к… (от об-щих уравнений прямой к параметрическим/кано-ническим)
| Pá ssage from … to… (from gé neral equá tions of a straight line to those pà ramé tric/canó nical)
|
Відстань від точки до площини
| Расстояние от точки до плоскости
| Dí stance of a pó int from [betwé en a pó int and] a plane
|
Точка перетину прямої і площини, прямої і повер-хні
| Точка пересечения пря-мой и плоскости, пря-мой и поверхности
| Ì ntersé ction/cross pó int [pó int of ì ntersé ction] of a straight lí ne and a plane, of a straight lí ne and a sú rface
|
Кут між двома площи-нами, між двома прямими
| Угол между двумя плос-костями, между двумя прямыми
| Á ngle (inclú ded) betwé en two planes, betwé en two straight lines
|
Кут між прямою і пло-щиною
| Угол между прямой и плоскостью
| Á ngle (inclú ded) betwé en a straight line and a plá ne [á ngle a straight line má -kes with a plá ne]
|
Рівняння площини
| Уравнение плоскости
| Equá tion of a plá ne
|
Рівняння площини у від-різках на осях
| Уравнение плоскости в отрезках на осях
| Equá tion of a plá ne in sé g-ments, threeì ntercé pt equá -tion of a plá ne, (three)ì n-tercé pt form of the equá -tion of a plá ne
|
Рівняння площини, яка проходить через три дані точки
| Уравнение плоскости, которая проходит через три данные точки
| Equá tion of a plane pá s-sing thró ugh three given pó ints;; three-pó int form of the equá tion of a plane
|
Рівняння площини, яка проходить через дану точку перпендикулярно даному вектору [нормальному вектору]
| Уравнение плоскости, проходящей через дан-ную точку перпендику-лярно данному вектору [нормальному вектору]
| Equá tion of a plane pá s-sing thró ugh a given pó int pè rpendí cularly [in pè rpendí cular] to a given vé c-tor [to a nó rmal vé ctor]
|
Рівняння прямої
| Уравнения прямой
| Equá tions of a straight line
|
Рівняння прямої, яка проходить через дану точку паралельно даному вектору [напрямному вектору]
| Уравнения прямой, про-ходящей через данную точку параллельно дан-ному вектору [направля-ющему вектору]
| Equá tions of a straight line passing thró ugh a given pó int in pá rallel to a given vé ctor [diré ction vé ctor]
|
Рівняння прямої, яка проходить через дві дані точки
| Уравнения прямой, про-ходящей через две дан-ные точки
| Equá tions of a straight line pá ssing thró ugh two given pó ints; two pó int form of the equá tions of a straight line
|
Умова паралельності двох площин, двох прямих, прямої і площини
| Условие параллельности двух плоскостей, двух прямых, прямой и плос-кости
| Pá rallelism condition of two planes, of two straight lines, of a straight lí ne and a sú rface
|
Умова перпендикулярності двох площин, двох прямих, прямої і площини
| Условие перпендикуляр-ности двух плоскостей, двух прямых, прямой и плоскости
| Pé rpendì culá rity con-dí -tion of two planes, of two straight lines, of a straight lí ne and a plane
|