Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основні теоретичні відомості






Для твердих тіл відомі такі види деформацій:

1) деформація стиснення (розтягування)

2) деформація зсуву

3) деформація кручення.

 

Для пружних деформацій виконується закон Гука.

Для деформацій стиснення (розтягування) закон Гука має вигляд:

(10.1)

де – відносна деформація, – абсолютне значення. видовження (стиснення), – довжина тіла, – площа поперечного перерізу тіла, – сила, яка прикладена до тіла вздовж лінії деформації, – модуль Юнга, який характеризує пружні властивості тіла і залежить від роду тіла; величина таблична.

Деформація зсуву виникає під дією сил, які прикладені до двох протилежних граней тіла тангенціально, тобто паралельно до граней. Під дією тангенціальних сил виникають зміщення одного шару тіла відносно іншого паралельного шару.

Будь-який прямокутний паралепіпед, уявно виділений в тілі, при деформації зсуву перетворюється на похилий.

Тому деформація зсуву супроводжується деформацією розтягу і стиснення, оскільки, як це видно з рис. 10.1, одна діагональна площина розтягується,

а друга – укорочується. Проте зсув не супроводжується зміною об’єму тіла,

яке деформується.

За міру деформації зсуву беруть відносну деформацію (кут зсуву) , значення якого при малих деформаціях визначається відношенням абсолютного зсуву до висоти паралепіпеда , і для малих кутів , тому .

Для пружних деформацій зсуву закон Гука має вигляд:

(10.2)

де – модуль зсуву, який характеризує пружні властивості тіла при деформації зсуву, величина таблична, – сила, тангенціально прикладена до основи тіла,

– площа цієї основи.

Деформації зсуву зазнають з’єднувальні стрижні, заклепки, з’єднуючі деталі, болти різних конструкцій, шпонки та інші деталі.

Деформація кручення виникає в тілі, один кінець якого закріплений, а до протилежного кінця до симетричних точок, що лежать на одній лінії в площині, перпендикулярній до осі тіла прикладені протилежно направлені сили.

При деформації кручення циліндричного стрижня під дією крутного моменту сил всі поперечні перерізу стрижня (рис. 10.2) повертаються навколо осі ОО'

на деякі кути, величини яких будуть тим більші, чим далі ці перерізи лежать від закріпленої основи стрижня.

За міру деформації кручення беруть кут закручування – абсолютне кручення.

Закон Гука для пружних деформацій кручення має вигляд:

(10.3)

або

(10.4)

де –модуль кручення.

Деформацію кручення можна звести до деформації зсуву. Як видно

з рис. 10.2, в результаті деформації кручення твірні циліндричної поверхні та паралельні їм лінії повертаються на кут , який є кутом зсуву. Повний момент сил, який прикладений до всієї незакріпленої основи (на рис. 10.2 нижня основа циліндра), визначається за формулою:

(10.5)

Порівнюючи рівняння (10.4) і (10.5), знаходимо

(10.6)

Отже, модуль кручення залежить від радіуса стрижня, довжини стержня і модуля зсуву .

Для більшості однорідних та ізотропних тіл (металів) модуль зсуву дорівнює приблизно 0, 4 від чисельного значення модуля Юнга. За відомим (виміряним) значенням модуля кручення та формулою (10.6) можна обчислити модуль

зсуву .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал