Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Инерция күштерін тепе-теңдікке келтіру.
Қ озғ алмайтын ө сь тө ң ірегінде айналып жатқ ан дененің айналу ө сіне кө рсететін қ ысымы нө лге тең болуының шартын анық тау техникада ө те маң ызды. (4.30) дың соң ғ ы екеуінен кө ретініміз, болуының қ ажетті жә не жеткілікті шарты . болғ анда (4.30) тең деулерінің алғ ашқ ы екеуі тө мендегі тү рге келеді: болуы ү шін болуы керек. Бұ л жағ дайда дененің инерция центрі айналу ө сіне жатады. Бұ дан кө ретініміз, Аz ө сі инерция центрінің бас ө сі болуы керек. Осы жағ дайда ғ ана динамикалық қ ысым нө лге тең болады.
4.4-есеп. Радиусы r болғ ан шең бердің бө лігінен тұ ратын М массалы стерженнің бір ұ шы 0 0 валғ а бекітілген. Стержень валмен бір жазық тық та орналасқ ан.
4.8 сурет Вал ө згермейтін бұ рыштық жылдамдық пен айналады. Вал подшипниктерінде пайда болатын динамикалық қ ысымды жою ү шін валғ а біріктірілген салмақ сыз АВ стерженнің В ұ шына қ ойылатын m массаның х, у координаттары анық талсын (4.8-сурет). Шешуі: Санау жү йесін 4.8-суреттегідей таң даймыз. Есепті шешу ү шін Даламбер принципіне сә йкес, стерженнің ә рбір элементінің жә не қ осымша массасының инерция кү шін қ оямыз. Динамикалық қ ысым нө лге тең болуы ү шін инерция кү штері мен бірге алынғ ан барлық кү штер тепе - тең дікте болуы шарт. Стерженнен ds=rda элементті ажратып аламыз. Вал ө згермейтін бұ рыштық жылдамдық пен айланып жатқ аны ү шін D стерженьэлементінің инерция кү ші тө мендегідей кө ріністе жазылады:
Бұ дан бө ліп аламыз. Вал ө згермейтін бұ рыштық жылдамдық пен айналуда екендігінен стержень D элементтің инерция кү ші тө мендегідей болады:
Мұ нда Нә тижеде, (4.31) - айналу ө сіне перпендикуляр. Ал қ осымша массаның инерция кү ші ф, ке паралелль болып, мө лшері тө мендегідей: . (4.32) Демек, қ арастырылып жатқ ан инерция кү штері паралелль кү штер жү йесінен тұ рады. Бұ л кү штер жү йесінің тепе-тең дік шарттарын жазайық: , , (4.33) Мұ ндағ ы . (4.31) жә не (4.32) ні (4.33) ке қ ойып, табылғ ан ө рнектерді интегралдаймыз, яғ ни Бұ л тең деулерден келіп шығ ады. Сонымен, В нү ктенің координаталары , , немесе , болатынын табамыз. 4.5-есеп. Массасы ұ зындығ ы болатын бір текті жің ішке ДЕ стержень D ұ шымен АВ валғ а біріктірілген. ДЕ стержень валмен бұ рышын қ ұ райды. Вал М момент ә серінде айналады. Валдың бұ рыштық жылдамдығ ы болғ анда стерженнің алғ ан орны жазық тығ ына сә йкес келеді деп есептеп, А подпятник пен В подшипниктің динамикалық реакциясы табылсын: (4.9-сурет) Шешуі. Координат ө стерін 4.9-суреттегідей таң даймыз. Даламбер принципіне сә йкес, стерженге ә сер ететін ауырлық кү ші жә не , , , динамикалық реакция кү штерінен тыс инерция кү шін де ескереміз.
4.9 - сурет Есеп шартына қ арай стерженнің алғ ан орны жазық тығ ына сә йкес келеді. Сол ү шін стерженнің инерция орталығ ының координаттары тө мендегідей болады: (4.34) Енді стерженнің центрден сыртқ а тепкіш жә не ө ске қ атысты инерция моменттерін есептейміз. Бұ л ү шін координат жү йесін жү ргізіп, стерженнен болатын К элементін ажратып аламыз. Осы элементтің координаталарын анық таймыз: , , . Нә тижеде: (4.35) Немесе (4.36) (4.25) тен келіп шығ ады. Бұ дан: . (4.37) (4.36) ны (4.37) ге қ оямыз: . (4.38) (4.34), (4.35) жә не (4.38) ді (4.30) ғ а қ ойсақ, динамикалық реакциялар келіп шығ ады.
|