Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Побудова економетричної моделі на основі покрокової регресії






 

Оцінювання параметрів економетричної моделі та її дисперсійний аналіз становлять загальний процес побудови моделі. Поєднання цих частин зумовило появу альтернативного методу оцінювання параметрів моделі 1МНК, який базується на елементах дисперсійного аналізу.

При елементарному тлумаченні взаємозв’язку між двома змінними за допомогою 1МНК увагу, як правило, акцентують на коефіцієнтах кореляції. Причому неважко показати, що

,

де – парний коефіцієнт кореляції між та ; – середньоквадратичне відхилення залежної змінної; – середньоквадратичне відхилення незалежної змінної.

Отже, оцінка параметрів моделі прямо пропорційна до коефіцієнта парної кореляції. Аналогічні співвідношення виконуються і в загальному випадку.

А це означає, що оцінити параметри моделі можна через коефіцієнти кореляції: спочатку оцінити тісноту зв’язку між кожною парою змінних, а потім знайти оцінки параметрів економетричної моделі.

Оскільки коефіцієнти парної кореляції та співвідношення між ними і оцінками параметрів моделі базуються на дисперсіях та середніх квадратичних відхиленнях, то побудову економетричної моделі через коефіцієнти парної кореляції доцільно розглянути в дисперсійному аналізі моделі.

Залежність оцінок параметрів економетричної моделі і коефіцієнтів парної кореляції покладено в основу алгоритму покрокової регресії.

Опишемо цей алгоритм.

Крок 1-й. Усі вихідні дані змінних стандартизуються (нормалізуються):

де – нормалізована залежна змінна; – нормалізовані незалежні змінні; – середнє значення j-ї незалежної змінної; – середнє значення залежної змінної; , – середньоквадратичні відхилення.

При цьому середні значення і дорівнюють нулю, а дисперсії – одиниці.

Крок 2-й. Знаходиться кореляційна матриця (матриця парних коефіцієнтів кореляції):

де – парні коефіцієнти кореляції між залежною і незалежними змінними,

– кількість спостережень; – парні коефіцієнти кореляції між незалежними змінними,

Крок 3-й. На підставі порівняння абсолютних значень вибираються Найбільше вказує на ту незалежну змінну, яка найтісніше пов’язана з y. На цьому кроці на основі 1МНК знаходиться оцінка параметра цієї змінної в моделі:

,

де – оцінка параметра моделі, яка будується на основі стандартизованих даних.

Крок 4-й. Серед інших значень вибирається і в модель вводиться наступна незалежна змінна:

Якщо немає обмеження на внесення до економетричної моделі кожної наступної незалежної змінної, то обчислення виконуються доти, поки поступово не будуть внесені до моделі всі змінні.

Сума квадратів залишків для такої моделі запишеться так:

Звідси мінімізації підлягає:

.

Узявши похідну за кожною невідомою оцінкою параметрів цієї функції і прирівнявши всі здобуті похідні до нуля, дістанемо систему нормальних рівнянь.

Система нормальних рівнянь для знаходження оцінок параметрів моделі в загальному вигляді запишеться так:

Позначимо матрицю парних коефіцієнтів кореляції між незалежними змінними через , а вектор парних коефіцієнтів кореляції між залежною і незалежними змінними через . Тоді система нормальних рівнянь набере вигляду:

А оператор оцінювання параметрів:

Оскільки всі змінні виражені в стандартизованому масштабі, то параметри показують порівняльну силу впливу кожної незалежної змінної на залежну: чим більше за модулем значення параметра , тим сильніше впливає -та змінна на результат.

Зв’язок між оцінками параметрів моделі на основі стандартизованих і нестандартизованих змінних запишеться так:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал