Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема Коши. Вычисление интегралов от аналитических функций
Мы уже отмечали, что условия, при выполнении которых функция является аналитической, достаточно жесткие. Это и обуславливает справедливость следующей теоремы. Теорема 2 (Теорема Коши). Если - односвязная область комплексной плоскости и - однозначная аналитическая в этой области функция, то для любой замкнутой спрямляемой кривой , лежащей в области , интеграл от вдоль равен нулю: . Отметим, что теорема Коши остается справедливой и для многосвязной области. Из теоремы 2 вытекает, что интегралы от аналитической функции вдоль любых двух кривых и с общим началом и концом имеют равные значения. В самом деле, кривая является замкнутой, и, следовательно, откуда Это означает, что интеграл от функции , аналитической в односвязной области , не зависит от кривой (от пути интегрирования), а зависит только от начальной и конечной точек этой кривой. Поэтому для интеграла вдоль произвольной спрямляемой кривой , соединяющей точки и , можно пользоваться обозначением . Рассмотрим интеграл от аналитической функции, если конечная точка – переменная, т.е. есть некоторая функция от верхнего предела: Можно показать, что - аналитическая функция, и что ее производная равна . Таким образом, интеграл является первообразной для подынтегральной функции (определение первообразной аналитической функции аналогично определению первообразной функции действительной переменной). И это позволяет сделать вывод о справедливости формулы Ньютона-Лейбница: , здесь - одна из первообразных функции , (). Этот результат позволяет сводить вычисление интеграла от аналитической функции к отысканию какой-либо первообразной функции и, следовательно, использовать известные формулы и методы интегрирования функций действительной переменной. В частности, если и аналитические функции, то будет справедлива формула интегрирования по частям: . Пример. Вычислить интеграл Решение. Подынтегральная функция является аналитической на всей комплексной плоскости, поэтому для нее существует первообразная. Воспользуемся формулой Ньютона-Лейбница: Пример. Вычислить интеграл . Решение. Подынтегральная функция является аналитической, поэтому воспользуемся формулой интегрирования по частям: = = =
Аналитические функции комплексного переменного обладают следующим замечательным свойством: Теорема 3. (Интегральная формула Коши) Если - внутренняя точка односвязной области , ограниченной замкнутым контуром , - аналитическая в замкнутой области функция, то справедлива формула: Иными словами, если мы знаем значение аналитической функции на границе односвязной области, то мы можем найти значение этой функции в любой внутренней точке области. Более того, справедлива следующая теорема. Теорема 4. Если однозначная функция комплексного переменного имеет всюду в области первую производную, то она имеет в этой области и все производные высших порядков, которые могут быть найдены по формуле: Интегральную формулу Коши и формулу для производных высших порядков можно использовать для вычисления интегралов по замкнутому контуру. Пример. Вычислить интеграл . Решение. Рассмотрим подынтегральную функцию . Аналитичность этой функции нарушается в точках: (точки, в которых знаменатель равен 0). Контур, по которому вычисляется интеграл: , есть окружность с центром в точке и радиусом 3. Внутри этого контура лежит точка , поэтому внутри контура подынтегральная функция не является аналитической. Запишем эту функцию в виде: . Тогда функция является аналитической внутри замкнутого контура. Воспользуемся интегральной формулой Коши: . Пример. Вычислить интеграл . Решение. Аналитичность подынтегральной функции нарушается в точках . Внутри контура есть только одна из них: . Преобразуем подынтегральную функцию к виду: . Функция - аналитическая внутри контура, поэтому можно применить теорему 4 (в данном случае ):
|