Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нечеткие отношения и операции над ними






Опр. 1. Отношением на множестве называется некоторое подмножество декартова произведения .

В соответствии с этим определением задать отношение на множестве означает указать все пары , которые связаны отношением . Для обозначения того, что элементы связаны отношением, будем пользоваться следующими двумя эквивалентными формами записи: или .

Если множество , на котором задано отношение , конечно, то отношение задается в двух формах:

1) в матричной:

, , ,

2) в графовой:

Пусть на множестве заданы два отношения и , множество определяется матрицей , - матрицей .

Тогда рассмотрим отношение , которое является объединением двух отношений: .

Если является пересечением отношений и , то .

Опр. 2. Отношение включает в себя отношение , если для соответствующих множеств и выполняется условие .

Опр. 3. Если между и существует отношение , то обратным к нему называется такое отношение , что существует тогда и только тогда, когда . Если при этом , - матрицы этих отношений, то элементы этих матриц связаны соотношением: , .

Опр. 4. Произведение (композиция) отношений на декартовом произведении определяется следующим образом: тогда и только тогда, когда существует такой , для которого выполнены одновременно отношения и . При этом элементы матриц отношений связаны следующим образом:

.

Основные свойства отношений:

1. Отношение рефлексивно, если или для любого .

Пример рефлексивного отношения на множестве действительных чисел: отношение (‘больше-равно’).

2. Отношение на антирефлексивно, если из того, что следует . В матрице рефлексивного отношения все диагональные элементы равны 1, а антирефлексивного – 0.

3. Отношение симметрично, если из того, что следует . Матрица симметричного отношения – симметричная. Отношение называется антисимметричным, если из того, что и , следует .

4. Для транзитивного отношения выполняется следующее условие: .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал