Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Цели освоения дисциплины
Учебная дисциплина «Дифференциальные и разностные уравнения» использует материал, полученный студентами в курсах «Математический анализ» и «Линейная алгебра». Предполагается посещение студентами лекций и семинарских занятий, решение основных типов задач, включаемых в контрольные работы, домашнего задания и одного промежуточного теоретического тестирования. Курс будет использоваться в теории и приложениях теории вероятностей и математической статистики, математической экономики, эконометрики, микроэкономики, макроэкономики, комплексного экономического анализа хозяйственной деятельности, теории межотраслевого баланса и большей части спецкурсов по кафедрам финансов и экономической теории. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей таких задач. Дисциплина является модельным прикладным аппаратом для изучения студентами факультета Экономики математической компоненты своего профессионального образования. При рассмотрении в курсе конкретных математических методов и алгоритмов главное внимание уделяется их применению в экономическом анализе, оперированию с данными экономической природы. Список литературы поможет студентам, осваивающим и создающим свой профессиональный исследовательский инструментарий. Учебная задача курса: Актуальной практической задачей дисциплины является подведение студентов к творческому профессиональному восприятию последующих специальных дисциплин, явно или неявно связанных с подготовкой, анализом, принятием, реализацией, оцениванием последствий, корректировкой решений. 5. Место дисциплины в структуре ООП ВПО Дисциплина «Дискретная математика» относится к базовой части профессионального цикла (Б2.Б.3). Учебная дисциплина «Дифференциальные и разностные уравнения» использует материал, полученный студентами в курсах «Математический анализ» и «Линейная алгебра». Предполагается посещение студентами лекций и семинарских занятий, решение основных типов задач, включаемых в контрольные работы, домашнего задания и одного промежуточного теоретического тестирования. Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин математической направленности, информатики, экономики, дисциплин по выбору студентов. 6. Компетенции обучающегося, формируемые в результате освоения дисциплины* Выпускник должен обладать следующими компетенциями: - Владением культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения (ОК-1); - способностью использовать знания о современной естественнонаучной картине мира в образовательной и профессиональной деятельности, применять методы математической обработки информации, теоретического и экспериментального исследования (ОК-4); - готовностью использовать основные методы, способы и средства получения, хранения, переработки информации, готовностью работать с компьютером как средством управления информацией (ОК-8); - способностью работать с информацией в глобальных компьютерных сетях (ОК-9); - способностью понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной тайны (ОК-12); - осознанием социальной значимости своей будущей профессии, обладанием мотивацией к осуществлению профессиональной деятельности (ОПК-1). В результате освоения дисциплины обучающийся должен: 1) Знать: понятия и утверждения, входящие в содержание дисциплины, доказательства теорем. - знать точные формулировки основных понятий, уметь интерпретировать их на простых модельных примерах; в том числе свободно использовать дифференциальные и разностные уравнения в записи математических соотношений и моделировании экономических зависимостей; - знать общие методы решения дифференциальных и разностных уравнений, иметь понятие о задаче Коши и теоремах существования и единственности решения задачи Коши, как для разностных, так и для дифференциальных уравнений и систем; - знать общие теоремы о структуре множества решений линейных уравнений и систем линейных уравнений (как дифференциальных, так и разностных), уметь применять специальные способы построения таких решений; - знать основные методы интегрирования обыкновенных дифференциальных уравнений первого порядка, способы понижения порядка для уравнений высших порядков; 2) Уметь: решать задачи по разделам курса, применять теоретический материал, творчески подходить к решению профессиональных задач, ориентироваться в нестандартных условиях и ситуациях, анализировать возникающие проблемы. - уметь находить как комплексную, так и вещественную, фундаментальную систему решений линейного однородного дифференциального и разностного уравнения с постоянными коэффициентами для случая комплексных и кратных корней характеристического уравнения. - уметь находить частное решение неоднородного линейного дифференциального и разностного уравнения с постоянными коэффициентами в случае, когда правая часть имеет вид суммы квазиполиномов, как в резонансном, так и в нерезонансном случаях. 3) Владеть методами и приемами решения практических задач и доказательства утверждений. - обладать навыками работы и быть готовыми понимать разделы учебной и научной литературы, связанные с применением обыкновенных дифференциальных и разностных уравнений и систем. 7. Объем дисциплины и виды учебной работы (для всех направлений подготовки, на которых обеспечивается данная дисциплина). Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 часов.
Содержание дисциплины Разделы дисциплины и виды занятий (в часах). Примерное распределение учебного времени:
9. Содержание разделов дисциплины (указать краткое содержание раздела (темы) с обязательным указанием номера раздела (темы). Часть первая. Обыкновенные дифференциальные уравнения. 1. Примеры математических моделей в экономике, описываемых дифференциальными уравнениями. Обыкновенные дифференциальные уравнения первого порядка. Общие понятия для обыкновенного дифференциального уравнения первого порядка (решение уравнения, интегральная кривая, задача Коши для уравнения в нормальной форме). Уравнение первого порядка в дифференциалах и методы его решения (уравнение с разделяющимися переменными, однородное уравнение, уравнение в полных дифференциалах). Линейное уравнение первого порядка. Метод вариации постоянной. Уравнение Бернулли. 2. Комплексные числа. Комплексные числа. Арифметические действия над комплексными числами. Модуль и аргумент числа. Тригонометрическая и экспоненциальная записи комплексного числа. Решение уравнений в комплексных числах. 3. Системы линейных обыкновенных дифференциальных уравнений в нормальной форме. Общие понятия и свойства (матрица системы, решение системы, задание начальных значений). Линейная однородная система (принцип суперпозиции и фундаментальная матрица решений, общее решение). Структура общего решения линейной неоднородной системы. Вариация постоянных. 4. Обыкновенные дифференциальные уравнения второго порядка. Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме). Методы понижения порядка дифференциальных уравнений. Понятие о дифференциальных уравнениях высших порядков. Часть вторая. Разностные (рекуррентные) уравнения. 1. Примеры математических моделей в экономике, описываемых разностными уравнениями. 2. Разностные (рекуррентные) уравнения первого порядка. Общие понятия для рекуррентного уравнения первого порядка в нормальной форме (решение уравнения, начальные условия, задача Коши, решение рекуррентного уравнения подстановкой). Линейное уравнение первого порядка (арифметическая и геометрическая прогрессии, частичные суммы и произведения, метод вариации постоянной). 3. Разностные (рекуррентные) уравнения второго порядка. Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме). Решение уравнения подстановкой. 4. Линейные разностные (рекуррентные) уравнения. Принцип суперпозиции и алгоритм построения общего решения линейного однородного уравнения с постоянными коэффициентами. Структура общего решения линейного неоднородного уравнения. Методы нахождения частного решения линейного неоднородного уравнения. Уравнения с постоянными коэффициентами.
|