Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнения с разделяющимися переменными






Пример. Найти общее решение дифференциального уравнения:

Интеграл, стоящий в левой части, берется по частям

- это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

- верно

Пример. Найти решение дифференциального уравнения при условии у(2) = 1.

при у(2) = 1 получаем

Итого: или - частное решение;

Проверка: , итого

- верно.

Пример. Решить уравнение

- общий интеграл

- общее решение

Пример. Решить уравнение

Пример. Решить уравнение при условии у(1) = 0.

Интеграл, стоящий в левой части будем брать по частям

Если у(1) = 0, то

Итого, частный интеграл: .

Пример. Решить уравнение .

Для нахождения интеграла, стоящего в левой части. Получаем общий интеграл:

Пример. Решить уравнение

Преобразуем заданное уравнение:

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение .

; ;

Допустим, заданы некоторые начальные условия х0 и у0. Тогда:

Получаем частное решение


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал