Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Подставляем полученное соотношение в исходное уравнение
Из этого уравнения определим переменную функцию С1(х): Интегрируя, получаем: Подставляя это значение в исходное уравнение, получаем:
. Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли. При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл. Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты. Пример. Решить уравнение Сначала приведем данное уравнение к стандартному виду: Применим полученную выше формулу: Уравнение Бернулли. Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному. Для этого разделим исходное уравнение на yn. Применим подстановку, учтя, что . Т.е. получилось линейное уравнение относительно неизвестной функции z. Решение этого уравнения будем искать в виде: Пример. Решить уравнение Разделим уравнение на xy2: Полагаем . Полагаем Произведя обратную подстановку, получаем: Пример. Решить уравнение Разделим обе части уравнения на Полагаем Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:
Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что: Получаем: Применяя обратную подстановку, получаем окончательный ответ:
|