Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Линейные уравнения.






Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида

.

Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей.

Общее решение:

Линейные неоднородные дифференциальные уравнения.

Для интегрирования линейных неоднородных уравнений (Q(x)¹ 0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

Метод Бернулли.

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .

При этом очевидно, что - дифференцирование по частям.

Подставляя в исходное уравнение, получаем:

Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Например, функция может быть представлена как

и т.п.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .

Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.

Интегрируя, можем найти функцию v:

; ;

Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию.

Подставляя полученные значения, получаем:

Окончательно получаем формулу:

, С2 - произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

Метод Лагранжа.

Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.

Вернемся к поставленной задаче:

Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.

Далее находится решение получившегося однородного дифференциального уравнения:

.

Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х.

Тогда по правилам дифференцирования произведения функций получаем:


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал