Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейные дифференциальные уравнения высших порядков.
Линейные однородные дифференциальные уравнения с произвольными коэффициентами. Рассмотрим уравнение вида Определение. Выражение называется линейным дифференциальным оператором. Линейный дифференциальный оператор обладает следующими свойствами: 1) 2) Решения линейного однородного уравнения обладают следующими свойствами: 1) Если функция у1 является решением уравнения, то функция Су1, где С – постоянное число, также является его решением. 2) Если функции у1 и у2 являются решениями уравнения, то у1 +у2 также является его решением. Общее решение линейного однородного дифференциального уравнения второго порядка. Из вышеизложенного видно, что отыскание общего решения линейного однородного дифференциального уравнения сводится к нахождению его фундаментальной системы решений. Однако, даже для уравнения второго порядка, если коэффициенты р зависят от х, эта задача не может быть решена в общем виде. Тем не менее, если известно одно ненулевое частное решение, то задача может быть решена. Теорема. Если задано уравнение вида и известно одно ненулевое решение у = у1, то общее решение может быть найдено по формуле:
Таким образом, для получения общего решения надо подобрать какое – либо частное решение дифференциального уравнения, хотя это бывает часто довольно сложно.
|