Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
Это уравнения вида: В уравнениях такого типа возможно понижение порядка на k единиц. Для этого производят замену переменной:
Тогда получаем: Теперь допустим, что полученное дифференциальное уравнение проинтегрировано и совокупность его решений выражается соотношением:
Делая обратную подстановку, имеем:
Интегрируя полученное соотношение последовательно k раз, получаем окончательный ответ:
Пример. Найти общее решение уравнения Применяем подстановку
Произведя обратную замену, получаем:
Общее решение исходного дифференциального уравнения:
Отметим, что это соотношение является решением для всех значений переменной х кроме значения х =0. Уравнения, не содержащие явно независимой переменной. Это уравнения вида Порядок таких уравнений может быть понижен на единицу с помощью замены переменных
Подставляя эти значения в исходное дифференциальное уравнение, получаем:
Если это уравнение проинтегрировать, и
Пример. Найти общее решение уравнения Замена переменной:
1) Для решения полученного дифференциального уравнения произведем замену переменной:
С учетом того, что
Общий интеграл имеет вид:
2) Таким образом, получили два общих решения.
|