Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
При этом многочлен называется характеристическим многочленом дифференциального уравнения.
Для того, чтобы функция являлась решением исходного дифференциального уравнения, необходимо и достаточно, чтобы т.е. Т.к. ekx ¹ 0, то - это уравнение называется характеристическим уравнением.
Как и любое алгебраическое уравнение степени n, характеристическое уравнение имеет n корней. Каждому корню характеристического уравнения ki соответствует решение дифференциального уравнения.
В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные. Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами. 1) Составляем характеристическое уравнение и находим его корни. 2) Находим частные решения дифференциального уравнения, причем: a) каждому действительному корню соответствует решение ekx; б) каждому действительному корню кратности m ставится в соответствие m решений: в) каждой паре комплексно – сопряженных корней характеристического уравнение ставится в соответствие два решения: и . г) каждой паре m – кратных комплексно – сопряженных корней характеристического уравнения ставится в соответствие 2 m решений: 3) Составляем линейную комбинацию найденных решений. Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами. Пример. Решить уравнение . Составим характеристическое уравнение: Общее решение имеет вид: Пример. Решить уравнение Это линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка. Для нахождения общего решения необходимо отыскать какое - либо частное решение. Таким частным решением будет являться функция Исходное дифференциальное уравнение можно преобразовать: Общее решение имеет вид: Окончательно: Пример. Решить уравнение Составим характеристическое уравнение: Общее решение: Пример. Решить уравнение Характеристическое уравнение: Общее решение: Пример. Решить уравнение Характеристическое уравнение: Общее решение: Пример. Решить уравнение Характеристическое уравнение: Общее решение: Пример. Решить уравнение Характеристическое уравнение: Общее решение: Пример. Решить уравнение Характеристическое уравнение: Общее решение: Пример. Решить уравнение Это уравнение не является линейным, следовательно, приведенный выше метод решения к нему неприменим. Понизим порядок уравнения с помощью подстановки Тогда Окончательно получаем: Это выражение будет общим решением исходного дифференциального уравнения. Полученное выше решение у1 = С1 получается из общего решения при С = 0. Пример. Решить уравнение Производим замену переменной: Общее решение:
|