Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Общее уравнения прямой в пространстве






 

Уравнение прямой можно рассматривать как уравнение линии пересечения двух плоскостей. Плоскость в векторной форме задаётся уравнением

× ,

где - нормальный вектор плоскости; - радиус- вектор произвольной точки плоскости.

Пусть в пространстве заданы две плоскости: × и × , нормальные векторы которых имеют координаты: , , а - радиус- вектор произвольной точки плоскости. Тогда общее уравнение прямой в векторной форме имеет вид:

Общее уравнение прямой в координатной форме имеет вид:

Приведём уравнение прямой в общем виде к каноническому виду.

Для этого найдём координаты произвольной точки прямой и числа . При этом направляющий вектор прямой находится как векторное произведение векторов нормали к заданным плоскостям

Пример. Найти каноническое уравнение прямой, если прямая задана в виде:

Для нахождения точки лежащей на прямой, положим . Тогда

, т.е. .

Находим компоненты направляющего вектора прямой

Каноническое уравнение прямой примет вид

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал