Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Обратный ход метода Гаусса.






Найдем последовательно неизвестные, начиная с последней строки. Для этого в ячейки G12: G14 запишем формулы:

G4=D13/C13 (для вычисления x 3);

G3=D12-C12*G4 (для вычисления x 2);

G2=D11-C11*G4-B11*G3 (для вычисления x 1).

3.6.2. Решение СЛАУ с помощью надстройки «Поиск решения»

Систему линейных алгебраических уравнений можно также решить, используя надстройку «Поиск решения». При использовании данной надстройки строится последовательность приближений , i=0, 1, …n.

Назовем вектором невязок следующий вектор:

Задача Excel заключается в том, чтобы найти такое приближение , при котором вектор невязок стал бы нулевым, т.е. добиться совпадения значений правых и левых частей системы .

В качестве примера рассмотрим СЛАУ (3.27).

Последовательность действий:

1. Оформим таблицу, как показано на рис.3.4. Введем коэффициенты системы (матрицу А) в ячейки А3: С5.

Рис.3.4. Решение СЛАУ с помощью надстройки «Поиск решения»

2. В ячейках А8: С8 будет сформировано решение системы 1, х2, х3). Первоначально они остаются пустыми, т.е. равными нулю. В дальнейшем будем их называть изменяемыми ячейками.. Однако для контроля правильности вводимых далее формул, удобно ввести в эти ячейки какие-либо значения, например, единицы. Эти значения можно рассматривать как нулевое приближение решения системы, = (1, 1, 1).

3. В столбец D введем выражения для вычисления левых частей исходной системы. Для этого в ячейкуD3 введем и затем скопируем вниз до конца таблицы формулу:

D3=СУММПРОИЗВ (A3: C3; $A$8: $C$8).

Используемая функция СУММПРОИЗВ принадлежит категории Математические.

4. В столбец Е запишем значения правых частей системы (матрицу В).

5. В столбец F введем невязки в соответствии с формулой (3.29), т.е. введем формулу F3=D3-E3 и скопируем ее вниз до конца таблицы.

6. Будет не лишним проверить правильность вычислений для случая = (1, 1, 1).

7. Выберем команду Данные\Анализ\Поиск решения.

Рис. 3.5. Окно надстройки «Поиск решения»

В окне Поиск решения (рис.3.5) в поле Изменяемые ячейки укажем блок $А$8: $С$8, а в поле Ограничения$F$3: $F$5=0. Далее щелкнем по кнопке Добавить и введем эти ограничения. И затем - кнопка Выполнить

Полученное решение систем (3.28) х 1 = 1; х 2 = –1 х 3 = 2 записано в ячейках А8: С8, рис.3.4.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал