Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Момент силы относительно оси






Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку называется моментов силы относительно оси.

Момент силы относительно оси вычисляется как момент проекции силы F⃗ F→ на плоскость Π Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π Π:

 

Mz(F⃗)=Mz(F⃗ Π)=±FΠ h.Mz(F→)=Mz(F→ Π)=±FΠ h.


Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗ Π F→ Π. Если, глядя по направлению оси OzOz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс'', иначе - ``минус''.

 

Моментом силы относительно неподвижной точки называется физическая величина, определяемая векторным произведением радиуса-вектора, проведенного из точки О в точку А приложения, на силу.

Моментом силы относительно неподвижной оси называется скалярная величина, равная проекции на эту ось вектора момента силы, определенного относительно произвольной точки данной оси. Значение момента не зависит от выбора положения точки на оси.

24 Момент импульса относительно точки и оси

 

Моментом импульса МТ относительно неподвижной точки называется физическая величина, определяемая векторным произведением L=rp, где, L-псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p.

Моментом импульса относительно неподвижной оси называется скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки данной оси. Момент импульса не зависит от положения точки на оси.

 

25 Момент инерции тела. Его вычисление

Чтобы найти момент инерции тела, надо просуммировать момент инерции всех материальных точек, составляющих данное тело

(5.4)

В общем случае, если тело сплошное, оно представляет собой совокупность множества точек с бесконечно малыми массами , и моменты инерции тела определяется интегралом

(5.5)

о где - расстояние от элемента до оси вращения.

Распределение массы в пределах тела можно охарактеризовать с помощью
плотности

(5.5)

где m - масса однородного тела, V - его объем. Для тела с неравномерно распределенной массой это выражение даетсреднюю плотность.

Плотность в данной точке в этом случае определяется следующим образом

и тогда

(5.6)

Пределы интегрирования зависят от формы и размеров тела Интегрирование уравнения (5.5) наиболее просто осуществить для тех случаев, когда ось вращения проходит через центр тяжести тела. Рассмотрим результаты интегрирования для простейших (геометрически правильных) форм твердого тела, масса которого равномерно распределена по объему.

Момент инерции полого цилиндра с тонкими стенками, радиуса R.

Для полого цилиндра с тонкими стенками

Сплошной однородный диск. Ось вращения является осью диска радиуса . и массы m с плотностью Высота диска h. Внутри диска на расстоянии вырежем пустотелый цилиндр с толщиной стенки и массой . Для него

Весь диск можно разбить на бесконечное множество цилиндров, а затем просуммировать:

Момент инерции шара относительно оси, проходящей через центр тяжести.

Момент инерции стержня длиной L и массой m относительно оси, проходящей:

а) через центр стержня -

б) через начало стержня -

Теорема Штейнера. Имеем тело, момент инерции которого относительно оси, проходящей через его центр масс известен. Необходимо определить момент инерции относительно произвольно оси параллельной оси . Согласно теореме Штейнера, момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, плюс произведение массы тела на квадрат расстояния между осями:

 

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс н материальных точек системы на квадраты их расстояний до рассматриваемой оси. Суммирование производится по всем элементарным массам, на которые разбивается тело. В случае непрерывного распределения масс эта сумма сводится к интегралу, где интегрирование производится по всему объему тела.

26 Теорема Штейнера

Теоре́ ма Гю́ йгенса — Ште́ йнера (теорема Гюйгенса, теорема Штейнера): момент инерции тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями[1]:

где

— известный момент инерции относительно оси, проходящей через центр масс тела,

— искомый момент инерции относительно параллельной оси,

— масса тела,

— расстояние между указанными осями.

 

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

J= J0 + md2 (1)

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║ О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J0 = Jd = mR2/2 (2)

Так как d = R, тогда и момент инерции относительно оси, которая проходит через указанную на рисунке точку А будет определяется формулой (3):

J = mR2 + mR2/2 = mR2 (3)

Теорема Штейнера - момент инерции тела относительно произвольной оси равен моменту его инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

27 Уравнение динамики вращательного движения

Уравнение динамики вращательного движения

Согласно уравнению (5.8) второй закон Ньютона для вращательного движения

По определению угловое ускорение и тогда это уравнение можно

переписать следующим образом

с учетом (5.9)

или

(5.10)

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

 

Если ось совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство M=IE, где I - главный момент инерции тела.

28 Закон сохранения момента импульса. Условие его выполнения

Закон сохранения момента импульса
 

 

Для замкнутой системы тел момент внешних сил всегда равен нулю, так как внешние силы вообще не действуют на замкнутую систему. Поэтому , то есть или Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени. Это один из фундаментальных законов природы. Аналогично для замкнутой системы тел, вращающихся вокруг оси z: отсюда или . Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения. Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.
Вращающееся вокруг своей оси тело при отсутствии тормозящих вращение сил так и будет продолжать вращаться. Физики привычно объясняют этот феномен тем, что такое вращающееся тело обладает неким количеством движения, выражающимся в форме углового момента количества движения или, кратко, момента импульса или момента вращения. Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса. Если теперь допустить, что тело вращается не вокруг собственного центра массы, а вокруг некоего центра вращения, удаленного от него, оно всё равно будет обладать вращательным моментом импульса. В математическом представлении момент импульса L тела, вращающегося с угловой скоростью ω, равен L = Iω, где величина I, называемая моментом инерции, является аналогом инерционной массы в законе сохранения линейного импульса, и зависит она как от массы тела, так и от его конфигурации — то есть, от распределения массы внутри тела. В целом, чем дальше от оси вращения удалена основная масса тела, тем выше момент инерции. Сохраняющейся или консервативной принято называть величину, которая не изменяется в результате рассматриваемого взаимодействия. В рамках закона сохранения момента импульса консервативной величиной как раз и является угловой момент вращения массы — он не изменяется в отсутствие приложенного момента силы или крутящего момента — проекции вектора силы на плоскость вращения, перпендикулярно радиусу вращения, помноженной на рычаг (расстояние до оси вращения). Самый расхожий пример закона сохранения момента импульса — фигуристка, выполняющая фигуру вращения с ускорением. Спортсменка входит во вращение достаточно медленно, широко раскинув руки и ноги, а затем, по мере того, как она собирает массу своего тела всё ближе к оси вращения, прижимая конечности всё ближе к туловищу, скорость вращения многократно возрастает вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции I, тем выше угловая скорость ω и, как следствие, короче период вращения, обратно пропорциональный ей. Следует отметить, однако, что не любая приложенная извне сила сказывается на моменте вращения. Предположим, вы поставили свой велосипед «на попа» (колесами вверх) и сильно раскрутили одно из его колес. Понятно, что, приложив тормозящую силу трения к любой окружности колеса (нажав на ручной тормоз, приложив руку к резине или вращающимся спицам), вы, тем самым, снизите угловую скорость его вращения. Однако, сколько бы вы ни старались, вы не остановите вращения колеса, пытаясь воздействовать на ось вращения. Иными словами, для изменения момента вращения необходима не просто сила, а момент силы — то есть, сила, приложенная по направлению, отличному от направления оси вращения, и на некотором удалении от нее. Поэтому закон сохранения момента вращения можно сформулировать и несколько иначе: момент вращения тела изменяется только в присутствии момента силы, направленной на его изменение. И тут возникает важное дополнительное замечание. До сих пор мы говорили об изменении момента вращения в плане ускорения или замедления вращения, как такового, но при этом тело продолжало вращаться всё в той же плоскости, и ось вращения не изменяла своей ориентации в пространстве. Теперь предположим, что момент силы приложен в плоскости, которая отличается от плоскости, в которой вращается тело. Такое воздействие неизбежно приведет к изменению направления оси вращения. В отсутствие же внешних воздействий закон сохранения момента импульса подразумевает, что направление оси вращения остается неизменным. Этот принцип широко используется в так называемых гироскопических навигационных приборах. В их основе лежит массивное, быстро вращающееся колесо — гироскоп, — которое не изменяет своей ориентации в пространстве, благодаря чему прибор стабильно указывает заданное направление, вне зависимости от угла поворота субмарины, самолета или спутника, на котором он установлен. С технической точки зрения гироскоп представляет собой массивный диск на осевых подшипниках низкого трения, раскрученный с очень большой скоростью. Идеальный гироскоп — это диск бесконечной массы, вращающийся с бесконечной скоростью в идеальном вакууме. В таком случае закон сохранения момента импульса подскажет нам, что направление оси такого идеального гироскопа не отклонится от исходной ни на одну угловую секунду, и он вечно будет указывать нам на изначально заданную точку. Искусственные спутники Земли, как правило, оснащаются несколькими независимыми гироскопами, вращающимися в разных плоскостях, и бортовая электроника, сопоставляя данные нескольких гироскопических компасов и усредняя поправки на возможные отклонения их показаний, безошибочно определяет координаты и ориентацию спутника в околоземном пространстве.

 

Закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени. Закон сохранения импульса - фундаментальный закон природы. Он связан со свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

29 Работа и кинетическая энергия при вращательном движении

Работа и кинетическая энергия при вращательном движении твердого тела.

Найдем работу при вращательном движении твердого тела. Пусть ось вращения проходит через точку О, находящуюся на расстоянии r от точки приложения силы С, а > a ‑ угол между векторами и (рис.3.5). При повороте тела на бесконечно малый угол dj точка приложения силы проходит путь dS=rdj. Работа силы равна произведению проекции силы вдоль смещения Fsin(a) на величину этого смещения r dj. . Но F× r× sin(a) = M - момент силы. Таким образом: работа силы при вращении тела вокруг неподвижной оси равна произведению момента действующей силы на угол поворота dA = Mdj.

Чтобы рассчитать кинетическую энергию вращательного движения твердого тела, мысленно его разобьем на n материальных точек с массами m1, m2,..., mn, находящихся на расстояниях r1, r2,..., rn от оси вращения. Так как тело абсолютно твердое, угловые скорости всех его точек одинаковы

.

Линейные скорости точек будут разные > , и т.д. Кинетическая энергия вращающегося тела Ек.вр равна

;

.

Работа внешних сил при вращении тела идет на увеличение его кинетической энергии. dA=dЕк.вр, следовательно работу можно представить как разность кинетических энергий конечного и начального положений

Если тело катится без скольжения, то оно одновременно участвует в двух движениях: поступательном и вращательном, его кинетическая энергия

.

Основное уравнение вращательного движения тела вокруг неподвижной оси.

Воспользуемся соотношением, приведенным выше dA=dEвр, т.е.

Поделим обе части равенства на dt:

и так как , а , то или

В векторном вид > или представляет собой уравнение динамики вращательного движения твердого тела вокруг неподвижной оси, проходящей через центр масс тела. Угловое ускорение, приобретаемое телом при вращении его вокруг неподвижной оси, прямо пропорционально вращающему моменту сил и обратно пропорционально моменту инерции тела. По форме оно сходно с уравнением II закона Ньютона. Из их сопоставления вытекает, что при вращательном движении роль массы играет момент инерции, роль линейного ускорения - угловое ускорение, роль силы - момент силы.

Ранее получено, что > . Возьмем первую производную по времени от этого равенства

.

Это выражение есть вторая (более общая) форма уравнения динамики вращательного движения твердого тела: Скорость изменения момента импульса тела равна результирующему моменту всех внешних сил, > (оно сходно с законом динамики поступательного движения: ).

Если на тело не действуют внешние силы или система тел замкнутая, то момент сил > и , откуда и получаем закон сохранения момента импульса: Момент импульса замкнутой системы тел остается постоянным во времени. Аналогом его в поступательном движении является > закон сохранения импульса замкнутой системы тел. Закон сохранения момента импульса справедлив и для тел, размеры, форма и момент инерции которых могут меняться в ходе движения. Поскольку величина , то при увеличении момента инерции J, угловая скорость w уменьшается и наоборот. К примеру, акробат, совершая переворот в воздухе, чтобы увеличить угловую скорость своего вращения, группируется, т.е. прижимает к себе руки и ноги. При этом его момент инерции уменьшается.

Колебательными называются процессы в той или иной степени повторяющиеся во времени. Виды колебаний: Свободными колебаниями называются колебания, которые возникают в колебательной системе, в отсутствии внешних воздействий. Эти колебания возникают в следствии какого-либо начального наклонения колебательной системы от положения равновесия. Вынужденные колебания – это колебания, возникающие в колебательной системе под влиянием переменного внешнего воздействия.

Работа и кинетическая энергия при вращательном движении

 

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси. Если мысленно разбить это тело на n точек массами m1, m2, …, mn, находящихся на расстояниях r1, r2, …, rn от оси вращения, то при вращении они будут описывать окружности и двигаться с различными линейными скоростями v1, v2, …, vn. Так как тело абсолютно твердое, то угловая скорость вращения точек будет одинакова:

Кинетическая энергия вращающегося тела есть сумма кинетических энергий его точек, т.е.

Учитывая связь между угловой и линейной скоростями, получим:

Сопоставление формулы (4.9) с выражением для кинетической энергии тела, движущегося поступательно со скоростью v, показывает, что момент инерции является мерой инертности тела во вращательном движении.
Если твердое тело движется поступательно со скоростью v и одновременно вращается с угловой скоростью ω вокруг оси, проходящей через его центр инерции, то его кинетическая энергия определяется как сумма двух составляющих:

(4.10)

где vc – скорость центра масс тела; Jc - момент инерции тела относительно оси, проходящей через его центр масс.

30 Таблица аналогий поступательного и вращательного движений в динамике


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.016 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал