![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула Симпсона
При вычислении интеграла
Здесь Тогда Таким образом, мы получаем формулу Симпсона
Можно показать, что формула Симпсона имеет четвертый порядок точности. ПРИМЕР 4.1. Вычислить интеграл J = Найдем значение определенного интеграла точно:
Разобьем отрезок
Для нахождения интеграла методом левых прямоугольников, необходимо просуммировать элементы третьего ряда в диапазоне
Как следует из таблицы, для данной подынтегральной функции формула левых прямоугольников дает приближенное значение с избытком, а формула правых прямоугольников – с недостатком. Хорошую точность дали метод трапеций и метод средних прямоугольников. Результаты различаются, поскольку значения известной подынтегральной функции в методе средних были вычислены в средних точках, а не получены путем интерполяции. Метод Симпсона дал абсолютно точное значение интеграла. Это связано с тем, что первообразная функция в данном примере является полиномом четвертого порядка, для которых метод Симпсона дает точное значение.
|