Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Скалярное произведение двух векторов (определение) и его выражение в координатной форме. Угол между векторами.






Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .

формула для вычисления скалярного произведения имеет вид
,
а для векторов в трехмерном пространстве скалярное произведение в координатах находится как
.

 

Угол между векторами и . Из определения скалярного произведения

получим формулу , (2)
которая в координатах имеет вид

 

13. n -мерный вектор. Линейная комбинация, линейная зависимость и независимость векторов.

 

N-мерным вектором называется последовательность чисел. Эти числа называются координатами вектора. Число координат вектора n называется размерностью вектора. Вектор записывается в виде строки или столбца:

 

Линейная комбинация векторов

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

Линейная зависимость и независимость векторов

Система линейно зависима что

Система линейно независима

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал