Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Радикальный признак Коши






[править]

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Признак Коши.

Радикальный признак Коши — признак сходимости числового ряда:

Если для числового ряда с неотрицательными членами существует такое число , , что, начиная с некоторого номера, выполняется неравенство , то данный ряд сходится.

 

Содержание [убрать] · 1 Предельная форма · 2 Доказательство · 3 Примеры · 4 См. также

[править]Предельная форма

Условие радикального признака равносильно следующему:

То есть можно сформулировать радикальный признак сходимости знакоположительного ряда в предельной форме:

Если для ряда , то если ряд сходится, если ряд расходится, если вопрос о сходимости ряда остается открытым.

 

[править]Доказательство

1. Пусть . Очевидно, что существует такое , что . Поскольку существует предел , то подставив в определение предела выбранное получим:

Раскрыв модуль, получаем:

Поскольку , то ряд сходится. Следовательно, по признаку сравнения ряд тоже сходится.

2. Пусть . Очевидно, что существует такое , что . Поскольку существует предел , то подставив в определение предела выбранное получим:

Раскрыв модуль, получаем:

Поскольку , то ряд расходится. Следовательно, по признаку сравнения ряд тоже расходится.

5 Знакочередующиеся ряды


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал