Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Понятие о дифференциальном уравнении. Задача Коши
Определение 1. Уравнение, содержащее независимую переменную, функцию от этой независимой переменной и ее производные различных порядков, называется дифференциальным уравнением. Определение 2. Наивысший порядок производной, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения. Дифференциальное уравнение n -го порядка имеет вид F(x, y, y ', y '', …, y (n))=0. Определение 3. Дифференциальное уравнение n -го порядка называется линейным, если неизвестная функция и все ее производные входят в него в первой степени. Общий вид линейного дифференциального уравнения n -го порядка: a 0 (x)y (n) + a 1 (x)y (n-1) +... + a n-1 (x)y (1) + a n (x)y = f(x). (1) Определение 4. Линейное дифференциальное уравнение (1) называется однородным, если f(x) º 0, и неоднородным - в противном случае. Примеры дифференциальных уравнений: y'' - sin x y' + ( cos x) y = tg x - линейное, sin y' - cos y = ctg x - нелинейное, y''' - y' = 0- линейное, (y IV ) 2 - 3 y''' + y = 1 - нелинейное. Определение 5. Решением дифференциального уравнения называется любая функция y = j(x), при подстановке которой в уравнение будет получено тождество. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения, график решения называют интегральной кривой. Пример 1. y' - f(x) = 0, Пример 2. y'' = 0, y' = f(x), y' = C, y = ò f(x)dx + C. y = C 1 x + C 2. Определение 6. Решение дифференциального уравнения n -го порядка, содержащее n произвольных постоянных, называется общим решением дифференциального уравнения. Определение 7. Если в результате интегрирования дифференциального уравнения получена зависимость между y и x, из которой не удается явно выразить y через x (т.е. неизвестная функция задана неявно), то данную зависимость называют общим интегралом дифференциального уравнения. Определение 8. Решение, полученное из общего при конкретных значениях произвольных постоянных, называется частным решением. Пример. y'' + y = 0. y = C 1cos x + C 2sin x - общее решение. у 1 = 3cos x -2sin x - частное решение.
|