Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Графическое изображение вариационных рядов
Для наглядности статистические ряды представляют графиками, наиболее распространёнными являются полигон и гистограмма. Полигон применяется для изображения как дискретных, так и интервальных статистических рядов, гистограмма – для изображения только интервальных рядов. Покажем построение этих графиков на примере. Для построения гистограммы частот на оси абсцисс откладываем частичные интервалы значений случайной величины , на каждом из которых строим прямоугольник, высота которого равна соответствующей частоте интервала . Если на гистограмме частот соединить середины верхних сторон элементарных прямоугольников, то полученная замкнутая ломаная образует полигон распределения частот (рис. 1). По гистограмме приближённо определим моду (см. подраздел 5.1). Замечание: в теории вероятностей гистограмме и полигону относительных частот соответствует график функции плотности распределения. По виду полигона делают первоначальное предположение о законе распределения исследуемой случайной величины.
Рисунок 1. – Графическое изображение вариационного ряда.
4. Эмпирическая функция распределения Пусть известен статистический ряд количественного признака X. Введем обозначения: – число наблюдений, при которых наблюдалось значение признака меньше (накопленная частота); n – объем выборки; – относительная частота события (относительная накопленная частота). Эмпирической функцией распределения называют функцию , равную относительной накопленной частоте события : . В отличии эмпирической функции распределения выборки, интегральную функцию распределения генеральной совокупности называют теоретической функцией распределения. Теоретическая функция распределения определяет вероятность события : , эмпирическая – относительную частоту этого события. Вследствие закона больших чисел (теорема Бернулли) относительная частота события , т.е. стремится по вероятности к вероятности этого события, т.е. к . обладает всеми свойствами , а именно: 1) ; 2) – неубывающая функция; 3) =0 при , – наименьшая варианта; 4) =1 при , – наибольшая варианта. Эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности. В столбец «Накопленная частота» таблицы 2 запишем значения, полученные по формуле:
Таблица 2.
Рисунок 2. – График эмпирической функции распределения.
Для построения графика эмпирической функции распределения (кумуляты) на оси абсцисс откладывают интервалы, на оси ординат – относительные накопленные частоты, соответствующие правым границам интервала. на левой границе первого интервала равна нулю. Кумулята представляет собой ломанную линию (рис. 2). По кумуляте приближённо определим значение медианы (см. подраздел 5.1).
|