Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Асимптоты плоской кривой
Определение 1. Если точка M(x; y) перемещается по кривой y = f (x) так, что хотя бы одна из координат точки стремиться к ¥ и при этом расстояние от этой точки до некоторой прямой стремиться к 0, то эта прямая называется асимптотой кривой y = f(x). Асимптоты бывают двух видов: вертикальные и наклонные. Определение 2. Прямая x = a называется вертикальной асимптотой кривой y = f (x), если хотя бы один из односторонних пределов или равен +¥ или -¥ Замечание. Если прямая x = a является вертикальной асимптотой кривой y = f (x), то в точке x = a функция f (x) имеет разрыв второго рода. Наоборот. Если в точке x = a функция f (x) имеет разрыв второго рода, то прямая x = a является вертикальной асимптотой кривой y = f (x).
Определение 3. Прямая y = k x + b называется наклонной асимптотой кривой y = f (x) при x ®+¥ (или x ®-¥), если функцию f (x) можно представить в виде: , где a(x) – бесконечно малая функция при x ®+¥ (или x ®-¥).
Теорема 1. Для того чтобы кривая y = f (x) имела наклонную асимптоту при x ®+¥ (или x ®-¥) необходимо и достаточно существования двух конечных пределов: и Доказательство. Ограничимся случаем x ®+¥. Необходимость. Пусть y = k x + b – наклонная асимптота при x ®+¥ кривой y = f (x). Тогда функция f (x) представима в виде: , где при . Убедимся в существовании конечных пределов: . необходимость доказана. Достаточность. Пусть существуют конечные пределы и . Тогда по свойству конечных пределов второй предел можно переписать в виде: , где a(x) – бесконечно малая при x ®+¥. Отсюда получаем: , где при . Достаточность доказана.
Пример 1. Найти асимптоты кривой Решение. 1) D(y) = (-¥; -1) È (-1; 1) È (1; + ¥). 2) Точки x = -1 и x = 1 являются точками разрыва второго рода, так как:
Поэтому прямые x = -1 и x = 1 являются вертикальными асимптотами. 3) Вычислим предел: , k = 1.
Отсюда следует, что при x ®+¥ прямая y = 1× x +0, т.е. y = x - наклонная асимптота при x®+¥. Найдем наклонную асимптоту при x ®-¥. Вычисляя те же пределы при x ®-¥, получим k = 1 и b = 0, то есть прямая y = x является наклонной асимптотой при x® -¥. Ответ: x = ± 1 – вертикальные асимптоты y = x – наклонная асимптота при x ® ±¥.
|