Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сведения из теории. Планирование перевозок грузов является важной экономической задачей, занимающей ключевое место среди других проблем планирования
Планирование перевозок грузов является важной экономической задачей, занимающей ключевое место среди других проблем планирования. Большое значение имеет задача о минимизации транспортных издержек при перевозках однородных грузов из пунктов производства в пункты потребления, например, древесины с нижних складов к деревообрабатывающим предприятиям, строительных материалов с баз на стройплощадки и т.п. Пусть поставщиков располагают единицами некоторого однородного продукта (груза), и этот продукт должен быть доставлен потребителям в количествах соответственно. Известны стоимости , , перевозки единицы груза от поставщика потребителю . Следует определить план перевозок, позволяющий вывезти все грузы, полностью удовлетворить потребности и имеющий наименьшие суммарные транспортные затраты. Модель транспортной задачи называется закрытой (или сбалансированной), если суммарные запасы груза равны суммарным потребностям, т.е. . Если это условие не выполняется, то модель называется открытой (или несбалансированной). Открытая модель легко сводится к закрытой путем введения фиктивного поставщика (если потребности превышают запасы) или фиктивного потребителя (если запасы превышают потребности). Поэтому мы ограничимся рассмотрением только закрытой модели. План перевозок транспортной задачи можно представить в виде матрицы , где – количество единиц груза, перевозимого от поставщика потребителю , , . Естественно предполагать, что . Стоимость перевозки груза от к составит . Следовательно, суммарные транспортные расходы по плану составят . (3.1) Система ограничений получается из следующих соображений. Все запасы из пункта должны быть вывезены, т.е. , . (3.2) Все потребности пункта должны быть удовлетворены, т.е. , . (3.3) Таким образом, математическая модель транспортной задачи состоит в определении неотрицательного плана перевозок , для которого выполняются условия (3.2) и (3.3), а целевая функция (3.1) принимает наименьшее значение. Доказано, что транспортная задача с закрытой моделью всегда разрешима, т.е. она имеет оптимальное решение. Специфика ограничений транспортной задачи значительно облегчает применение симплексного метода для ее решения. Симплексный метод сводится к методу потенциалов, при использовании которого можно обойтись без составления симплексных таблиц, заменив их таблицами перевозок вида табл. 3.1.
Т а б л и ц а 3.1
|