Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сложные проценты
При начислении сложных процентов сумма процентов, начисленных после первого периода начисления, являющегося частью общего срока хранения вклада, не выплачивается, а присоединяется сумме вклада. База для начисления сложных процентов в отличие от использования простых процентов будет увеличиваться с каждым периодом начисления, являющимся частью общего срока хранения вклада. Если проценты за период начисления начисляются по постоянной сложной старке in и все периоды начисления имеют одинаковую длительность, сумма вклада с процентами в конце первого периода по формуле (2.4) будет равна: S1=Р • (1+n • i). Сумма вклада с процентами в конце второго периода составит: S2=S1 • (1+n • in)=Р • (1+n • i)2 Если в течение срока хранения вклада будет N одинаковых периодов начисления, сумма вклада с процентами в конце срока составит: S=Р • (1+ i)n. (2.12) Сумма начисленных процентов будет равна: J = S-P=P[(1 + n • i)N - 1]. (2.13) Если срок хранения вклада в годах (n) не является целым числом, множитель наращения можно определить двумя способами. При первом способе используют формулу (2.12) с соответствующим нецелым показателем степени. При втором способе множитель наращения определяется по выражению: kh = (1+ i)n1 - (1+n2 • i), (2.14) где n1 - целое число лет в течение срока вклада; n2 - оставшаяся дробная часть года. При начислении сложных процентов несколько раз в году (месяцам, по кварталам, по полугодиям) сумма вклада с процента (наращенная сумма) при сроке (т) лет будет равна: S=P(1 + n • i)N= P(1 + j/m)N (2.15) где in - ставка за период начисления; j - номинальная годовая ставка процентов; m - количество периодов начисления в году; N - количество периодов начисления в течение срока хранения вклада (N = n • m). Сумма начисленных процентов составит: J = P[(l+j/m)N – 1 ]. (2.16) Используя формулы для наращенной суммы при начислении сложных процентов один или несколько раз в году, можно получить выражение для срока хранения вклада при заданных прочих условиях. При использовании сложной годовой ставки процентов срок хранения в годах будет равен: n = (2.17) Из формул для наращенной суммы можно также определить ставку сложных процентов при прочих заданных условиях: i= (2.18) При использовании годовой ставки сложных процентов(1) и сроке хранения (n) лет дисконтированное значение будущей суммы вклада с процентами будет равно: P = S/(l+i)n=S • kd, (2.19) где kd = 1/(1 + i)n - коэффициент дисконтирования (приведения). При наличии сложных процентов несколько раз в году дисконтированная сумма будет равна: P=S/(1+j/m)N. (2.20)
|