Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Мета роботи. Вивчення й експериментальна перевірка властивостей узгоджених фільтрів.






Вивчення й експериментальна перевірка властивостей узгоджених фільтрів.

2 Ключові положення

2.1 Узгоджений фільтр (УФ) знаходить широке застосування в техніці зв’язку завдяки наступній властивості. При подачі на вхід фільтра, узгодженого з детермінованим сигналом s (t), суми сигналу s (t) і шуму на виході фільтра в певний момент часу (що позначається t 0) має місце максимальне відношення миттєвої потужності сигналу ys 2(t 0) до середньої потужності шуму P ш: rпік = ys 2(t 0)/ P ш. Це відношення залежить від енергії сигналу Е і спектральної густини потужності шуму N 0 й визначається

rпік = 2 Е / N 0. (1)

2.2 Узгоджений фільтр можна задати в часовій області імпульсною реакцією g (t) або в частотній області передавальною функцією

H (j w) = H (w)e j j(w), (2)

де H (w) – АЧХ УФ, j(w) – ФЧХ УФ.

Можна показати, що імпульсна реакція УФ є дзеркальним відображенням сигналу, з яким фільтр узгоджений:

g (t) = as (t 0t), (3)

де a, t 0 – довільні постійні.

Умова фізичної реалізації УФ виконується при t 0 ³ Ts, де Ts – тривалість сигналу s (t). УФ з імпульсною реакцією, що описується співвідношенням (3), має наступну передавальну функцію

H (j w) = aS *(j w) , (4)

де S *(j w) – функція, комплексно спряжена зі спектральною густиною сигналу s (t)

S (j w) = S (w)e j y(w), (5)

де S (w) – амплітудний спектр сигналу, y(w) – фазовий спектр сигналу.

Співвідношення (4) можна переписати у вигляді двох рівностей:

для АЧХ СФ

H (w) = aS (w) (6)

і для ФЧХ СФ

j(w) = –y(w) – w t 0. (7)

2.3 Проілюструємо сказане вище на прикладі фільтра, узгодженого з прямокутним імпульсом амплітуди А і тривалості Ts. Спектральна густина такого сигналу визначається за допомогою перетворення Фур’є

S п(j w) = = .

Нехай a = 1/ A і t 0 = Ts. На основі (4) дістанемо вираз для передавальної функції УФ

H п(j w) = . (8)

Зі співвідношення (8) випливає, що схема фільтра, узгодженого з П-імпульсом, складається з інтегратора (з передавальною функцією 1/ j w), пристрою затримки на час Ts (з передавальною функцією ) і віднімача.

2.4 Для довільного сигналу s (t) функції g (t) і H (j w), знайдені за допомогою співвідношень (3) і (4), є вихідними для синтезу фільтра методами теорії лінійних електричних кіл.

2.5 У загальному випадку форма сигналу на виході УФ визначається функцією взаємної кореляції вхідного сигналу і сигналу, з яким фільтр узгоджений. Якщо ж на вхід УФ подається сигнал, з яким фільтр узгоджений, то форма сигналу на виході визначається кореляційною функцією вхідного сигналу.

2.6 Узгоджені фільтри застосовуються, здебільшого, для побудови демодуляторів сигналів цифрових видів модуляції.

2.7 У деяких складних сигналів, в яких добуток ширини спектра на їх тривалість FTs > > 1, кореляційна функція Кs (t) має лише “вузький” викид в області навколо t = 0 тривалістю 2tк» 1/ F (tк – інтервал кореляції сигналу). При фільтрації таких сигналів узгодженими фільтрами відбувається стиск сигналів за часом (2tк < < Ts). Прикладом таких складних сигналів є сигнали, побудовані на основі кодів Баркера. Якщо такий сигнал у сумі із завадою пропустити через УФ, то буде мати місце не тільки максимізація відношення сигнал/шум, але і стиск сигналу за часом.

3 Ключові питання

3.1 Який фільтр називається узгодженим?

3.2 Які параметри сигналу повинні бути відомі для синтезу УФ?

3.3 Записати вирази для амплітудно-частотної і фазочастотної характеристик УФ. Дати їм фізичне тлумачення.

3.4 Як визначається імпульсна реакція УФ?

3.5 Що є умовою фізичної реалізації УФ?

3.6 Яку форму має відгук УФ при подачі на його вхід сигналу, з яким він узгоджений?

3.7 Як визначається відношення сигнал/шуму на виході УФ?

3.8 Зобразити схему фільтра, узгодженого з прямокутним імпульсом.

3.9 Пояснити призначення кодів Баркера й їх властивості.

4 Домашнє завдання

4.1 Вивчити основні положення розділу “Узгоджений фільтр” за конспектом лекцій і літературою [1, с. 419…429; 2, с. 396…407; 3, с. 174...180, 272…275].

4.2 Зобразити схему фільтра, узгодженого з П-імпульсом.

4.3 Для трьох сигналів, що використовуються у лабораторній роботі (див. розд. 6), побудувати графіки сигналів на виходах УФ за умови, що на їх входи подаються сигнали, з якими фільтри узгоджені. Прийняти, що тривалість сигналів Ts = 4 мс, частота радіоімпульсу f 0 = 1000 Гц.

Вказівки: Відомості про кореляційні функції П-імпульсу і радіоімпульсу можна знайти в лабораторній роботі 2.2 цього посібника.

Розрахунок кореляційної функції складного сигналу дано в Додатку А.

4.4 Підготуватись до обговорення за ключовими питаннями.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал