Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Предел функции




К элементарным функциям относятся: 1) простейшие элементарные функции: постоянная с, степенная , показательная , логарифмическая , тригонометрическая , обратные тригонометрические ; 2) все функции, получающиеся из простейших элементарных функций путем применения конечного числа следующих четырех операций: сложение, умножение, деление, суперпозиция функций (сложная функция). В класс элементарных функций попадают: а) многочлен; б) рациональная дробь (отношение двух многочленов); в) , т.к. ; г) ; д) , т.к. , и множество других.

Пусть функция определена во всех точках интервала , за исключением, быть может, точки . Число А называется пределом функции в точке , если для любого существует число такое, что для любого x, удовлетворяющего неравенству , выполняется неравенство , при этом пишут . Можно дать другое, равносильное приведенному, определение: число A называется пределом функции в точке x0, если для любой последовательности чисел , сходящейся к , . Если определена в интервале , то число A называется пределом при , если для любого существует число , такое, что неравенство влечет за собой неравенство . При этом пишут или . Аналогично определяется .


Данная страница нарушает авторские права?


mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал